I have a dataframe like that
Date | DayName | A | B | C
2022-03-01 Tuesday 50 20 40
2022-03-02 Wednesday 10 10 20
2022-03-03 Thurday 64 1 9
2022-03-04 Friday 9 7 12
I'd like to be add rows like :
Date | DayName | A | B | C
2022-03-01 Tuesday 50 20 40
2022-03-02 Wednesday 10 10 20
2022-03-03 Thurday 64 1 9
2022-03-04 Friday 9 7 12
Count 4 4 4
Min 9 1 9
Max 64 20 40
I tried add a row by
new_row = {'Date':'','DayName': '','A':'','B':'','C':''}
frame = frame.append(new_row,ignore_index = True)```
But i don't know how to count and find min, max of value. Somebody help me please
CodePudding user response:
Try this
It's not the best way, but I think it suits your needs.
import pandas as pd
import numpy as np
df1 = {
'Date':['2022-03-01', '2022-03-02', '2022-03-03', '2022-03-04'],
'DayName':['Tuesday', 'Wednesday', 'Thurday', 'Friday'],
'A':[50, 10, 64, 9],
'B' :[20, 10, 1, 7],
'C':[40, 20, 9, 12]
}
df1 = pd.DataFrame(df1)
print(df1)
countdf = df1.count(axis=0).values.tolist()[2:]
mindf = df1.min(axis=0).values.tolist()[2:]
maxdf = df1.max(axis=0).values.tolist()[2:]
df2 = {
'Date':['', '', ''],
'DayName':['', '', ''],
'A': [countdf[0],mindf[0],maxdf[0]],
'B' :[countdf[1],mindf[1],maxdf[1]],
'C': [countdf[2],mindf[2],maxdf[2]]
}
df2 = pd.DataFrame(df2, index = ['count','min','max'])
print(f'\n\n-------------BREAK-----------\n\n')
f = [df1,df2]
df1 = pd.concat(f)
print(df1)
CodePudding user response:
You can try aggregate multiple functions over the rows then concat dataframes
cols = ['A', 'B', 'C']
agg = (df[cols].agg(['count', min, max])
.rename_axis('Date')
.reset_index())
out = pd.concat([df, agg])
print(out)
Date DayName A B C
0 2022-03-01 Tuesday 50 20 40
1 2022-03-02 Wednesday 10 10 20
2 2022-03-03 Thurday 64 1 9
3 2022-03-04 Friday 9 7 12
0 count NaN 4 4 4
1 min NaN 9 1 9
2 max NaN 64 20 40