this was closed with the wrong answer, please provide the answers
group_ = pd.DataFrame({'Name' : ['X','Y', 'X', 'X', 'Y','Y'],
'a' : [3,6,4,7,9,3],
'b' : [6,4,8,7,6,5],
'h' : [34,43,63,34,54,56]})
Name a b h
0 X 3 6 34
1 Y 6 4 43
2 X 4 8 63
3 X 7 7 34
4 Y 9 6 54
5 Y 3 5 56
I would like to get the mean and std values of X and Y for all columns ( without listing them in agg, or anywhere has to be dynamic).
for mean I could have done this :
group_.groupby('Name').mean().mean(axis=1)
Name
X 18.444444
Y 20.666667
dtype: float64
np.mean([3,6,34,4,8,63,7,7,34]) = 18.444444
but for std not, doesn't work, because it gives the std of std of 3 columns.
group_.groupby('Name').std().std(axis=1)
Name
X 8.793713
Y 3.055050
dtype: float64
NOT CORRECT! X_std = np.std([3,6,34,4,8,63,7,7,34]) = 19.556818141059377
CodePudding user response:
For std
by all columns per groups first use DataFrame.melt
and then GroupBy.std
with ddof=0
(default pandas ddof=1
):
a = group_.melt('Name').groupby('Name')['value'].std(ddof=0)
print (a)
Name
X 19.556818
Y 21.756225
Name: value, dtype: float64
X_std = np.std([3,6,34,4,8,63,7,7,34])
print (X_std)
19.556818141059377
For both aggregate functions:
df = group_.melt('Name').groupby('Name').agg(std=('value', lambda x: x.std(ddof=0)),
mean=('value','mean'))
print (df)
std mean
Name
X 19.556818 18.444444
Y 21.756225 20.666667