I have some table with discount rates depending on the agent and its time period, and I would like to apply it on another table to get the current applicable rate on their date of sale.
This is the rate table (df_r)
Agentname ProductType OldRate NewRate StartDate EndDate
0 VSFAAL SPORTS 0.0 10.0 2020-11-05 2021-01-18
1 VSFAAL APPAREL 0.0 35.0 2020-11-05 2022-05-03
2 VSFAAL SPORTS 10.0 15.0 2021-01-18 2022-05-03
3 VSFAALJS SPORTS 0.0 10.0 2020-11-07 2022-05-03
4 VSFAALJS APPAREL 0.0 15.0 2020-11-07 2021-11-09
5 VSFAALJS APPAREL 15.0 5.0 2021-11-09 2022-05-03
And this is the transactions table (df)
Date Sales Agentname ProductType
0 2020-12-01 08:00:02 100.0 VSFAAL SPORTS
1 2022-03-01 08:00:09 99.0 VSFAAL APPAREL
2 2022-03-01 08:00:14 75.0 VSFAAL SPORTS
3 2021-05-01 08:00:39 67.0 VSFAALJS SPORTS
4 2020-05-01 08:00:51 160.0 VSFAALJS APPAREL
5 2021-05-01 08:00:56 65.0 VSFAALJS APPAREL
I was hoping to have the results like this:
Date Sales Agentname ProductType Agentname_rates
0 2020-12-01 08:00:02 100.0 VSFAAL SPORTS 10.0
1 2022-03-01 08:00:09 99.0 VSFAAL APPAREL 35.0
2 2022-03-01 08:00:14 75.0 VSFAAL SPORTS 15.0
3 2021-05-01 08:00:39 67.0 VSFAALJS SPORTS 10.0
4 2020-05-01 08:00:51 160.0 VSFAALJS APPAREL 0
5 2021-05-01 08:00:56 65.0 VSFAALJS APPAREL 15.0
Currently what I am doing is looping over product type, then agents then per index of the dates
col='Agentname'
for product in list(df.ProductType.unique()):
for uname in list(df[col].unique()):
a = df_r.loc[(df_r['Agentname'] == uname) & (df_r['ProductType'] == product.upper()) &
(df_r['EndDate'] >= df['Date'].min())]
for i in a.index:
df.loc[(df['ProductType'].str.upper() == product.upper()) & (df[col] == uname) & (
df['Date'] >= a.loc[i]['StartDate']) & (df['Date'] <= a.loc[i]['EndDate']),
[f"{col}_rates"]] = a.loc[i]['NewRate']
Is there a more efficient way of doing this?
CodePudding user response:
Here is one way to do it
Merge the two DF on product and agentname, and then filter based on the dates
df3=df2.merge(df[['StartDate', 'EndDate','NewRate']],
left_on =[df2['Agentname'], df2['ProductType']],
right_on=[df['Agentname'], df['ProductType']],
how='left',
suffixes=('','_start')
).drop(columns=['key_0', 'key_1' ])
df3[df3['Date'].astype('datetime64').dt.strftime('%Y-%m-%d').between(
df3['StartDate'].astype('datetime64'),
df3['EndDate'].astype('datetime64'))
]
Date Sales Agentname ProductType StartDate EndDate NewRate
0 2020-12-01 08:00:02 100.0 VSFAAL SPORTS 2020-11-05 2021-01-18 10.0
2 2022-03-01 08:00:09 99.0 VSFAAL APPAREL 2020-11-05 2022-05-03 35.0
4 2022-03-01 08:00:14 75.0 VSFAAL SPORTS 2021-01-18 2022-05-03 15.0
5 2021-05-01 08:00:39 67.0 VSFAALJS SPORTS 2020-11-07 2022-05-03 10.0
8 2021-05-01 08:00:56 65.0 VSFAALJS APPAREL 2020-11-07 2021-11-09 15.0
CodePudding user response:
You can try to create a separate function to check the rates, and specify the conditions in the function
import numpy as np
def check_rates(Date, Agentname, ProductType):
val = df_r['NewRate'].loc[(df_r['ProductType']==ProductType) & (df_r['Agentname']==Agentname) & (df_r['StartDate']<Date) & (df_r['EndDate']>Date)]
try:
return list(val)[0]
except:
return np.nan #not found
df['Agentname_rates'] = df.apply(lambda x: check_rates(x['Date'], x['Agentname'], x['ProductType']), axis=1)
print(df)
Output:
Date Sales Agentname ProductType Agentname_rates
0 2020-12-01 08:00:02 100.0 VSFAAL SPORTS 10.0
1 2022-03-01 08:00:09 99.0 VSFAAL APPAREL 35.0
2 2022-03-01 08:00:14 75.0 VSFAAL SPORTS 15.0
3 2021-05-01 08:00:39 67.0 VSFAALJS SPORTS 10.0
4 2020-05-01 08:00:51 160.0 VSFAALJS APPAREL NaN
5 2021-05-01 08:00:56 65.0 VSFAALJS APPAREL 15.0