I have a df that looks like this.
head(dfhigh)
rownames 2015Y 2016Y 2017Y 2018Y 2019Y 2020Y 2021Y
1 Australia 29583.7403 48397.383 45220.323 68461.941 39218.044 20140.351 29773.188
2 Austria* 1294.5092 -8400.973 14926.164 5511.625 2912.795 -14962.963 5855.014
3 Belgium* -24013.3111 68177.596 -3057.153 27119.084 -9208.553 13881.481 22955.298
4 Canada 43852.7732 36061.859 22764.156 37653.521 50141.784 23174.006 59693.992
5 Chile* 20507.8407 12249.294 6128.716 7735.778 12499.238 8385.907 15251.538
6 Czech Republic 465.2137 9814.496 9517.948 11010.423 10108.914 9410.576 5805.084
I want to calculate the changes between years, so instead of the values, the table has the percentage of change (obviously deleting 2015Y).
CodePudding user response:
Try this using (current - previous)/ previous *100
lst <- list()
nm <- names(dfhigh)[-1]
for(i in 1:(length(nm) - 1)){
lst[[i]] <- (dfhigh[[nm[i 1]]] - dfhigh[[nm[i]]]) / dfhigh[[nm[i]]] * 100
}
ans <- do.call(cbind , lst)
colnames(ans) <- paste("ch_of" , nm[-1])
ans
you can change the formula to calculate percentage as you want
CodePudding user response:
You could also use a tidyverse solution.
library(tidyverse)
df %>%
pivot_longer(!rownames) %>%
group_by(rownames) %>%
mutate(value = 100*value/lag(value)-100) %>%
ungroup() %>%
pivot_wider(names_from = name, values_from = value)
# # A tibble: 6 × 8
# rownames `2015Y` `2016Y` `2017Y` `2018Y` `2019Y` `2020Y` `2021Y`
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 Australia NA 63.6 -6.56 51.4 -42.7 -48.6 47.8
# 2 Austria* NA -749. -278. -63.1 -47.2 -614. -139.
# 3 Belgium* NA -384. -104. -987. -134. -251. 65.4
# 4 Canada NA -17.8 -36.9 65.4 33.2 -53.8 158.
# 5 Chile* NA -40.3 -50.0 26.2 61.6 -32.9 81.9
# 6 CzechRepublic NA 2010. -3.02 15.7 -8.19 -6.91 -38.3