Here's my dataset
a.age 15-20 21-34 35-50 <15 >50
829 0.973257 0.960501 0.953244 0.966997 0.957140
1030 0.943649 0.921949 0.890820 0.948845 0.902489
Here's my expected output Comparison is the highest comparing to the lowest age group
a.age 15-20 21-34 35-50 <15 >50 comparison
829 0.973257 0.960501 0.953244 0.966997 0.957140 1.020994624671123
1030 0.943649 0.921949 0.890820 0.948845 0.902489 1.0593037875216094
Note:
a.age
is index column
Comparison had 1.020994624671123
value is come from 0.973257/0.953244
, 15-20
compare to 35-50
Comparison had 1.020994624671123
value is come from 0.943649/0.890820
, <15
compare to 35-50
CodePudding user response:
Aggregate age like columns with min
and max
along axis=1
, then divide max
/ min
value to calculate ratio:
s = df.agg(['min', 'max'], axis=1)
df['comparision'] = s['max'] / s['min']
a.age 15-20 21-34 35-50 <15 >50 comparision
0 829 0.973257 0.960501 0.953244 0.966997 0.957140 1.020995
1 1030 0.943649 0.921949 0.890820 0.948845 0.902489 1.065137
Note: I am assuming that column a.age
is already set as the index of dataframe.