Home > OS >  R ggplot double y-axis, log10 and continuous
R ggplot double y-axis, log10 and continuous

Time:06-22

This question was closed for no reason, the provided link to a similar question does NOT provide an answer for this specific problem.

How can I have two different plots in one graph, with two separate y-axis, and with different scales?

   df <- data.frame(x=3:22,
                   y1=c(3, 4, 5, 7, 9, 13, 15, 19, 23, 24, 29,
                       38, 40, 50, 56, 59, 70, 89, 104, 130),
                   y2=c(1,2,3,4,4,5,5,6,6,7,6,5,5,5,4,4,3,3,2,1))
  
  
  
  ylim.prim <- c(min(df$y1), max(df$y1))
  ylim.sec <- c(min(df$y2), max(df$y2))
  b <- diff(ylim.prim)/diff(ylim.sec)
  a <- ylim.prim[1] - b*ylim.sec[1] 
  
  
  ggplot(df, aes(x=x))  
    geom_line(aes(y=y1)) 
    geom_line(aes(y = a   y2*b)) 
    scale_y_continuous(sec.axis = sec_axis(~ (. - a)/b)) 
 

 
  

So with this, I can plot a double y-axis, but I would like either the left or the right one to be in log-scale. Does anyone have an idea how to do that? I would like to highlight, that each axis belongs to one of the two geom_lines.

exemplary real data:

df<-structure(list(x = c(0.3499125, 8.347913, 16.34591, 24.34391, 
                     32.34191, 40.33992, 48.33792, 56.33592, 64.33392, 72.33192, 80.32992, 
                     88.32792, 96.32592, 104.3239, 112.3219, 120.3199, 128.3179, 136.3159, 
                     144.3139, 152.3119, 160.3099, 168.3079, 176.3059, 184.3039, 192.3019, 
                     200.2999, 208.2979, 216.2959, 224.2939, 232.2919, 240.2899, 248.2879, 
                     256.2859, 264.2839, 272.2819, 280.2799, 288.2779, 296.2759, 304.2739, 
                     312.2719, 320.2699, 328.2679, 336.2659, 344.2639, 352.2619, 360.2599, 
                     368.2579, 376.2559, 384.2539, 392.2519, 400.2451, 408.0882, 415.9314, 
                     423.7745, 431.7164, 439.6766, 447.6368, 455.597, 463.5572, 471.5174, 
                     479.4776, 487.4378, 495.398, 503.3582, 511.3184, 519.2786, 527.2465, 
                     535.234, 543.2215, 551.209, 559.1966, 567.1841, 575.1716, 583.1591, 
                     591.1466, 599.1342, 607.1217, 615.1092, 623.0967, 631.0842, 639.0718, 
                     647.0593, 655.0468, 663.0343, 671.0218, 679.0094, 686.9969, 694.9844, 
                     702.9719, 710.9594, 718.947, 726.9345, 734.922, 742.9095, 750.897, 
                     758.8846, 766.8721, 774.8596, 782.8471, 790.8346, 798.8222, 806.8097, 
                     814.7972, 822.7847, 830.7722, 838.7598, 846.7413, 854.7015, 862.6617, 
                     870.6219, 878.5821, 886.5423, 894.5025, 902.4627, 910.4229, 918.3831, 
                     926.3433, 934.3035, 942.2637, 949.9737, 957.7313, 965.6915, 973.6517, 
                     981.6119, 989.5721, 997.5323, 1005.493, 1013.453, 1021.413, 1029.373, 
                     1037.333, 1045.294, 1053.254, 1060.905, 1068.657, 1076.5, 1084.343, 
                     1092.245, 1100.232, 1108.22, 1116.207, 1124.195, 1132.183, 1140.17, 
                     1148.158, 1156.145, 1164.133, 1172.12, 1180.108, 1188.095, 1196.083, 
                     1204.07, 1212.058, 1220.045, 1228.033, 1236.02, 1244.008, 1251.995, 
                     1259.983, 1267.97, 1275.958, 1283.945, 1291.933, 1299.92, 1307.908, 
                     1315.895, 1323.883, 1331.871, 1339.858, 1347.846, 1355.833, 1363.821, 
                     1371.808, 1379.796, 1387.783, 1395.771, 1403.758, 1411.683, 1419.488, 
                     1427.293, 1435.234, 1443.214, 1451.195, 1459.175, 1467.155, 1475.135, 
                     1483.115, 1491.095, 1499.075, 1507.055, 1515.035, 1523.015, 1530.995, 
                     1538.975, 1546.955, 1554.935, 1562.915, 1570.895, 1578.875, 1586.855, 
                     1594.835, 1602.815, 1610.796, 1618.776, 1626.756), y2 = c(2.27, 
                                                                               2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 
                                                                               2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 
                                                                               2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 
                                                                               2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 
                                                                               2.27, 2.27, 2.27, 2.27, 2.27, 2.300344, 2.300344, 2.300344, 2.300344, 
                                                                               2.356774, 2.356774, 2.356774, 2.356774, 2.356774, 2.356774, 2.356774, 
                                                                               2.356774, 2.356774, 2.356774, 2.356774, 2.356774, 2.35672, 2.35672, 
                                                                               2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 
                                                                               2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 
                                                                               2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 
                                                                               2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 
                                                                               2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 2.35672, 
                                                                               2.35672, 2.35672, 2.35672, 2.436441, 2.436441, 2.436441, 2.436441, 
                                                                               2.436441, 2.436441, 2.436441, 2.436441, 2.436441, 2.436441, 2.436441, 
                                                                               2.436441, 2.436441, 2.593907, 2.436372, 2.436372, 2.436372, 2.436372, 
                                                                               2.436372, 2.436372, 2.436372, 2.436372, 2.436372, 2.436372, 2.436372, 
                                                                               2.436372, 2.436372, 2.32186, 2.362217, 2.362217, 2.362217, 2.356666, 
                                                                               2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 
                                                                               2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 
                                                                               2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 
                                                                               2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 
                                                                               2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 2.356666, 
                                                                               2.356666, 2.356666, 2.356666, 2.356666, 2.6, 2.6, 2.6, 1.38, 
                                                                               1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 
                                                                               1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 1.38, 
                                                                               1.38, 1.38), y1 = c(1.0121711505181e-12, 1.36703949435522e-12, 
                                                                                                   1.84632494858934e-12, 2.49364868526704e-12, 3.36792573591631e-12, 
                                                                                                   4.54872499912722e-12, 6.14351261535188e-12, 8.29743536886833e-12, 
                                                                                                   1.12065270336094e-11, 1.5135549574501e-11, 2.04420900737953e-11, 
                                                                                                   2.76091094527446e-11, 3.7288908764166e-11, 5.03624430409839e-11, 
                                                                                                   6.80195634790675e-11, 9.1867308143082e-11, 1.24076096081818e-10, 
                                                                                                   1.67577290537946e-10, 2.26330068874485e-10, 3.05681854075198e-10, 
                                                                                                   4.12854243103824e-10, 5.57601379152127e-10, 7.53097024416113e-10, 
                                                                                                   1.01713383727135e-09, 1.37374208059794e-09, 1.85537854367786e-09, 
                                                                                                   2.50587585968424e-09, 3.38443865549292e-09, 4.57102650080046e-09, 
                                                                                                   6.17363418887535e-09, 8.33811836170825e-09, 1.12614720154805e-08, 
                                                                                                   1.52097587979964e-08, 2.05423179929812e-08, 2.77444811472099e-08, 
                                                                                                   3.74717262176886e-08, 5.06093638045714e-08, 6.83530636095683e-08, 
                                                                                                   9.23177269923811e-08, 1.24684445803943e-07, 1.68399029805712e-07, 
                                                                                                   2.2743990730289e-07, 3.07180534936803e-07, 4.14878418164378e-07, 
                                                                                                   5.60335245682253e-07, 7.56789448222779e-07, 1.02212079550612e-06, 
                                                                                                   1.38047758295943e-06, 1.86447536195262e-06, 2.51816121915984e-06, 
                                                                                                   3.40041627253216e-06, 4.54641422109325e-06, 6.03834395349185e-06, 
                                                                                                   7.97982308417383e-06, 1.04817057864209e-05, 1.35489394526282e-05, 
                                                                                                   1.72865813618296e-05, 2.18309175451225e-05, 2.73477089217644e-05, 
                                                                                                   3.40380929265256e-05, 4.21460976943755e-05, 5.1967369819244e-05, 
                                                                                                   6.38600965206997e-05, 7.82579725998248e-05, 9.56860600237062e-05, 
                                                                                                   0.000116779922497502, 0.000142335963852117, 0.000173355233081032, 
                                                                                                   0.000210921169220437, 0.00025641423771755, 0.000311506843394084, 
                                                                                                   0.000378223660039666, 0.000459016772258694, 0.000556855446703318, 
                                                                                                   0.000675335852469291, 0.000818812559327979, 0.000992558463515475, 
                                                                                                   0.00120295979079978, 0.00145774933544351, 0.00176629223196222, 
                                                                                                   0.00213992675332361, 0.00259238540452746, 0.00314030080012767, 
                                                                                                   0.00380380663276417, 0.00460729241649197, 0.00558028623723877, 
                                                                                                   0.00675855195676351, 0.00818539089553454, 0.00991324940277193, 
                                                                                                   0.0120056289887936, 0.0145394320140841, 0.0176077795085524, 0.0213234607142798, 
                                                                                                   0.0258230276512022, 0.0312718588796218, 0.0378702107462816, 0.0458605985746323, 
                                                                                                   0.0555366906666179, 0.0672541473478419, 0.0814435879234418, 0.0986265500083953, 
                                                                                                   0.119434540978074, 0.144632361864515, 0.175146169178876, 0.212097172372404, 
                                                                                                   0.256843809691636, 0.310804466617569, 0.369842684226363, 0.431179045399307, 
                                                                                                   0.493945429064933, 0.557253598745863, 0.620207670785615, 0.681916748818428, 
                                                                                                   0.741507890725135, 0.7981374131588, 0.85100435722966, 0.899360296843544, 
                                                                                                   0.942521141956581, 0.979876115698495, 0.999812477868897, 0.972735811573507, 
                                                                                                   0.932054481163834, 0.885815978946983, 0.834672310063189, 0.779345135479752, 
                                                                                                   0.720614966194481, 0.659310357439126, 0.596295772938628, 0.532460446628508, 
                                                                                                   0.468704750726898, 0.405928059993783, 0.345016117261179, 0.286827900234236, 
                                                                                                   0.237623456225718, 0.19790417419609, 0.164452220923679, 0.136482929335078, 
                                                                                                   0.112955983834528, 0.0932654285994524, 0.0770066613579728, 0.0635815895825471, 
                                                                                                   0.0524963384973958, 0.0433430973402779, 0.0357851408660264, 0.0295444442412585, 
                                                                                                   0.0243914258497928, 0.0201365021470287, 0.0166231553258446, 0.0137221430720713, 
                                                                                                   0.0113267390267136, 0.00934882441245559, 0.00771563465768068, 
                                                                                                   0.00636709119593569, 0.00525358045912998, 0.00433414349100376, 
                                                                                                   0.00357495316102798, 0.00294808230359634, 0.00243046968641578, 
                                                                                                   0.00200307217108402, 0.00165016998349207, 0.00135877837976224, 
                                                                                                   0.00111817834219132, 0.000919518759694046, 0.000755491588934199, 
                                                                                                   0.000620062540625639, 0.000508249477581297, 0.000415939214900695, 
                                                                                                   0.000339735906332031, 0.000276836029518111, 0.000224925814050528, 
                                                                                                   0.000182095460069257, 0.000146769499059896, 0.000117648326182113, 
                                                                                                   9.36606547647744e-05, 7.39240003391358e-05, 5.77123463706654e-05, 
                                                                                                   4.44292627620613e-05, 3.35069132161542e-05, 2.30948965054054e-05, 
                                                                                                   1.35498521268301e-05, 6.6480335943903e-06, 3.22817353776792e-06, 
                                                                                                   1.56754636933548e-06, 7.6117394173847e-07, 3.69613102610182e-07, 
                                                                                                   1.79477797412926e-07, 8.71511930430619e-08, 4.23189904393637e-08, 
                                                                                                   2.05492170784783e-08, 9.97819224010812e-09, 4.84507812590914e-09, 
                                                                                                   2.3525233197402e-09, 1.1421808424864e-09, 5.54459053511967e-10, 
                                                                                                   2.69071150351853e-10, 1.30491713616467e-10, 6.32000285938001e-11, 
                                                                                                   3.05246463595271e-11, 1.46586964219514e-11, 6.95585084010912e-12, 
                                                                                                   3.218335275606e-12, 1.40934851021314e-12, 5.43057275709068e-13, 
                                                                                                   1.47366028903012e-13, 6.63775977550542e-15)), class = c("tbl_df", 
                                                                                                                                                           "tbl", "data.frame"), row.names = c(NA, -205L))

plot:

ylim.prim <- c(min(df$y1), max(df$y1))
 ylim.sec <- c(min(df$y2), max(df$y2))
 b <- diff(ylim.prim)/diff(ylim.sec)
 a <- ylim.prim[1] - b*ylim.sec[1] 
 
 
 
 ggplot(df, aes(x=x))  
   geom_line(aes(y=y1, color = "y1")) 
   geom_line(aes(y = 10^(a  y2*b), color = "y2"))  
   scale_y_log10(sec.axis = sec_axis(~ (log(., 10.0) - a)/b, 
                                     breaks = 1:6 * 0.5, name = "y2"))  
   coord_cartesian(
     xlim = c(),
     ylim=c(1e-10,3)) 
   scale_color_brewer(palette = "Set1", name = NULL)  
   theme_minimal(base_size = 16)  
   theme(axis.line.y.left = element_line(color = "#E41A1C"),
         axis.line.y.right = element_line(color = "#377EB8"),
         axis.line.x.bottom = element_line("gray"),
         axis.text.y.left = element_text(color = "#E41A1C"),
         axis.text.y.right = element_text(color = "#377EB8"))

CodePudding user response:

Showing which line belongs to which axis is simple enough by using colored theme elements and mapping each line to a color aesthetic.

The y1 series is approximately linear if we switch to scale_y_log10, which is also easy to do.

The difficult part is trying to get the second series mapped to a linear continuous axis when the primary axis is log scaled. To do this, we need to use the value of the second series as an exponent of some small number, chosen so that the scales of the two lines are approximately equal on your plot. We then need to take the log to the same base as part of our transformation in the secondary axis. In your case, 1.03 gives reasonable results:

ggplot(df, aes(x=x))  
  geom_line(aes(y=y1, color = "y1")) 
  geom_line(aes(y = 1.05^(a   y2*b), color = "y2"))  
  scale_y_log10(sec.axis = sec_axis(~ (log(., 1.03) - a)/b, 
                                    breaks = 1:4 * 2.5, name = "y2"))  
  scale_color_brewer(palette = "Set1", name = NULL)  
  theme_minimal(base_size = 16)  
  theme(axis.line.y.left = element_line(color = "#E41A1C"),
        axis.line.y.right = element_line(color = "#377EB8"),
        axis.line.x.bottom = element_line("gray"),
        axis.text.y.left = element_text(color = "#E41A1C"),
        axis.text.y.right = element_text(color = "#377EB8"))

enter image description here

You can see that y1 is plotted on a log axis, but y2 is on a normal continuous axis.

As a caveat here, secondary axes are often frowned upon in data visualization, and having one axis on a log scale with the other being non-log is likely to make the plot very difficult for your audience to interpret.


Edit

A more general approach would be to log transform the series on the primary axis and transform its labels too. This allows using a continuous axis rather than log axis:

a <- range(log10(df$y1))
b <- range(df$y2)

 ggplot(df, aes(x=x))  
   geom_line(aes(y=(log10(y1) - a[1])/diff(a), color = "y1")) 
   geom_line(aes(y = (y2 - b[1])/diff(b) , color = "y2"))  
   scale_y_continuous(
     labels = ~ 10^(. * diff(a)   a[1]),
     breaks = (pretty(log10(df$y1)) - a[1])/diff(a), name = "y1",
     sec.axis = sec_axis(~ diff(b) * .   b[1], name = "y2"))  
   scale_color_brewer(palette = "Set1", name = NULL)  
   theme_minimal(base_size = 16)  
   theme(axis.line.y.left = element_line(color = "#E41A1C"),
         axis.line.y.right = element_line(color = "#377EB8"),
         axis.line.x.bottom = element_line("gray"),
         axis.text.y.left = element_text(color = "#E41A1C"),
         axis.text.y.right = element_text(color = "#377EB8"))

enter image description here

  • Related