I am studying a past exam and I came across a question where I must write a function called setFunc to generate a set where I apply a function on each element in a list of tuples (which are a result of the Cartesian product operation)
So first, I implemented a helper function to take the union of sets:
ordUnion :: (Ord a) => [a] -> [a] -> [a]
ordUnion a [] = a
ordUnion [] b = b
ordUnion (x:xs) (y:ys) = case compare x y of
LT -> x : ordUnion xs (y:ys)
EQ -> x : ordUnion xs ys
GT -> y : ordUnion (x:xs) ys
Then I tried to implement the main function:
setFunc :: Ord c => (a -> b -> c) -> [a] -> [b] -> [c]
setFunc x y = f x y
setFunc (x:xs) (y:ys) = (f x y) OrdUnion (setFunc f xt ys)
but there are several errors in setFunc. Any help on fixing setFunc would be appreciated.
CodePudding user response:
I must use
ordUnion
somehow and I am not permitted to usesort
.
This sort of constraint is expected to appear within the body of the question.
A core part of the problem is that we want the output list to be sorted (from your example), but we are told nothing about possible order-preserving properties of the argument function. So we must accept that the f x y
output values will be produced in some unpredictable random order.
For example, we expect this equality to hold:
setFunc (*) [-7,2] [-7,3] == [-21,-14,6,49]
that is, the maximal output value results from the two minimal input values.
Hence, we are somewhat coerced into solving the problem in 2 steps:
- produce the
f x y
output values in whatever order - sort the list produced in step 1.
Let's call the step 1 function cartesianFunc
. It is easy to write it in recursive fashion:
cartesianFunc :: Ord c => (a -> b -> c) -> [a] -> [b] -> [c]
cartesianFunc f [] ys = []
cartesianFunc f (x:xs) ys = (map (f x) ys) (cartesianFunc f xs ys)
Note that we have dropped the useless Ord
constraints on types b and c.
Testing:
$ ghci
GHCi, version 8.8.4: https://www.haskell.org/ghc/ :? for help
...
λ>
λ> :load q13784671.hs
[1 of 1] Compiling Main ( q13784671.hs, interpreted )
Ok, one module loaded.
λ>
λ> cartesianFunc (*) [1,2,4] [1,3,9]
[1,3,9,2,6,18,4,12,36]
λ>
Now for step 2:
We may not use the library sort
function. But we have to use function ordUnion
, which merges two ordered lists into a bigger ordered list.
Assuming we had yet another function, say splitHalf
, which could split a list into two roughly equal parts, we could obtain our own sort function by:
- splitting the input list
- recursively sorting its two halves
- combining our two sorted halves using the merging
ordUnion
function.
To split a list, we can use the well-know tortoise-hare algorithm where at each iteration, the first part advances by one step and the second part advances by two steps.
This gives this code:
ordUnion :: (Ord a) => [a] -> [a] -> [a]
ordUnion a [] = a
ordUnion [] b = b
ordUnion (x:xs) (y:ys) = case compare x y of
LT -> x : ordUnion xs (y:ys)
EQ -> x : ordUnion xs ys
GT -> y : ordUnion (x:xs) ys
splitHalfTH :: [a] -> ([a],[a])
splitHalfTH xs = th xs xs
where
th (y:ys) (_:_:zs) = let (as,bs) = th ys zs in (y:as, bs)
th ys _ = ([],ys)
mySort :: (Ord a) => [a] -> [a]
mySort [] = []
mySort [a] = [a]
mySort xs = let (as,bs) = splitHalfTH xs in ordUnion (mySort as) (mySort bs)
and finally we can come up with our setFunc
function by combining mySort
and cartesianFunc
:
setFunc :: Ord c => (a -> b -> c) -> [a] -> [b] -> [c]
setFunc fn xs ys = mySort (cartesianFunc fn xs ys)
Testing:
λ>
λ> cartesianFunc (*) [1,2,4] [1,3,9]
[1,3,9,2,6,18,4,12,36]
λ>
λ> mySort $ cartesianFunc (*) [1,2,4] [1,3,9]
[1,2,3,4,6,9,12,18,36]
λ>
λ> setFunc (*) [1,2,4] [1,3,9]
[1,2,3,4,6,9,12,18,36]
λ>