I have this multi index dataframe :
Oeil_g ... Incli O_H O_V
d0 d1 d2 ...
face 1 25.9615 38.0526 52.0096 ... -0.0132282 0.00612446 -0.0185327
face 2 29.8329 43.0465 56.0803 ... -0.0259846 -0.011816 -0.0288471
face 3 26.9258 38.0132 51.0098 ... 0.00646753 -0.0194923 0.0441854
face 4 29.8329 41.0488 56.0357 ... 0 -0.0158057 0.0186262
face 5 25.0799 37.6563 50.636 ... 0 0.00874045 0.0883887
and i am trying to save it to a (.Csv) format like this :
az.to_csv("dataframe_faces.csv",header=True)
and i am getting this as result after reading the csv file:
df=pd.read_csv("dataframe_faces.csv")
print(df)
Unnamed: 0 Oeil_g ... Orientation_H Orientation_V
0 NaN d0 ... NaN NaN
1 face 1 25.96150997149434 ... 0.006124 -0.018533
2 face 2 29.832867780352597 ... -0.011816 -0.028847
3 face 3 26.92582403567252 ... -0.019492 0.044185
4 face 4 29.832867780352597 ... -0.015806 0.018626
i just wanna to keep the identical dataframe in firstplace after saving it to csv ?
Also i am trying to delete those Nan with (dropna) but it seems to delete the entire row, any idea ?
CodePudding user response:
By referencing https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
I think you should specify parameter index_col to be equal to your first column in the CSV so that face1, face2, face3 .. is still your index.