I am trying to average values in different months over vectors of dates. Basically, I have a dataframe with monthly values of a variable, and I'm trying to get a representative average of the experienced values for samples that sometimes span month boundaries.
I've ended up with a dataframe of monthly values, and vectors of the representative number of "month-year" combinations of every sampling duration (e.g. if a sample was out from Jan 28, 2000 to Feb 1, 2000, the vector would show 4 values of Jan 2000, 1 value of Feb 2000). Later I'm going to average the values with these weights, so it's important that the returned variable values appear in representative numbers.
I am having trouble figuring out how to index the dataframe pulling the representative value repeatedly. See below.
# data frame of monthly values
reprex_df <-
tribble(
~my, ~value,
"2000-01", 10,
"2000-02", 11,
"2000-03", 15,
"2000-04", 9,
"2000-05", 13
) %>%
as.data.frame()
# vector of month-year dates from Jan 28 to Feb 1:
reprex_vec <- c("2000-01","2000-01","2000-01","2000-01","2000-02")
# I want to index the df using the vector to get a return vector of
# January value*4, Feb value*1, or 10, 10, 10, 10, 11
# I tried this:
reprex_df[reprex_df$my %in% reprex_vec,"value"]
# but %in% only returns each value once ("10 11", not "10 10 10 10 11").
# is there a different way I should be indexing to account for repeated values?
# eventually I will take an average, e.g.:
mean(reprex_df[reprex_df$my %in% reprex_vec,"value"])
# but I want this average to equal 10.2 for mean(c(10,10,10,10,11)), not 10.5 for mean(c(10,11))
CodePudding user response:
Simple tidy solution with inner_join
:
dplyr::inner_join(reprex_df, data.frame(my = reprex_vec), by = "my")$value
CodePudding user response:
in base R:
merge(reprex_df, list(my = reprex_vec))
my value
1 2000-01 10
2 2000-01 10
3 2000-01 10
4 2000-01 10
5 2000-02 11
CodePudding user response:
Perhaps use match
from base R
to get the index
reprex_df[match(reprex_vec, reprex_df$my),]
my value
1 2000-01 10
1.1 2000-01 10
1.2 2000-01 10
1.3 2000-01 10
2 2000-02 11
CodePudding user response:
Another base R option using setNames
with(
reprex_df,
data.frame(
my = reprex_vec,
value = setNames(value, my)[reprex_vec]
)
)
gives
my value
1 2000-01 10
2 2000-01 10
3 2000-01 10
4 2000-01 10
5 2000-02 11