I'm attempting to calculate the sum across the rows and down the columns. I've generated the randomization and rearranged the values. Here is a reproducible example.
import numpy as np
import pandas as pd
# Generate randomized numbers
np.random.seed(101)
array = np.random.randint(50, size = 20)
print(array)
# Arrange columns
arr = array.reshape(5, 4).T
columns = arr[0, :].astype(str)
data = arr[0:].astype(float)
df = pd.DataFrame(data, columns=columns)
print(df)
#Calculate the sum of the rows
row = arr
row_array = row.sum(1)
print(row_array)
This is what I get when I run the command. I'm needing to generate a 2-dimensional array, not 1.
[31 11 17 6 23 11 47 9 13 40 4 40 28 0 46 5 12 29 40 49]
31.0 23.0 13.0 28.0 12.0
0 31.0 23.0 13.0 28.0 12.0
1 11.0 11.0 40.0 0.0 29.0
2 17.0 47.0 4.0 46.0 40.0
3 6.0 9.0 40.0 5.0 49.0
[107 91 154 109]
CodePudding user response:
Try using:
row_array = arr.sum(0)
To calculate the sum of the columns
Instead of:
row_array = sum(array[0,:])