I have defined a pandas DataFrame as follows:
df_tmp = pd.DataFrame({'EDT': pd.Series(dtype='datetime64[ns]'),
'FSPB': pd.Series(dtype='str'),
'FS_LA': pd.Series(dtype='str'),
'lA': pd.Series(dtype='int'),
'avg': pd.Series(dtype='float64'),
'nw': pd.Series(dtype='float64')})
Is there any way to convert the above into an empty polars DataFrame?
CodePudding user response:
According to the polars docs, polars DataFrames can take a pandas DataFrame in their constructor, so:
import pandas as pd
import polars as pl
df_tmp = pd.DataFrame({'EDT': pd.Series(dtype='datetime64[ns]'),
'FSPB': pd.Series(dtype='str'),
'FS_LA': pd.Series(dtype='str'),
'lA': pd.Series(dtype='int'),
'avg': pd.Series(dtype='float64'),
'nw': pd.Series(dtype='float64')})
df = pl.DataFrame(df_tmp)
should work.
CodePudding user response:
import polars as pl
import pandas as pd
pandas_df = pd.DataFrame({'EDT': pd.Series(dtype='datetime64[ns]'),
'FSPB': pd.Series(dtype='str'),
'FS_LA': pd.Series(dtype='str'),
'lA': pd.Series(dtype='int'),
'avg': pd.Series(dtype='float64'),
'nw': pd.Series(dtype='float64')})
pl.from_pandas(pandas_df)
shape: (0, 6)
┌──────────────┬──────┬───────┬─────┬─────┬─────┐
│ EDT ┆ FSPB ┆ FS_LA ┆ lA ┆ avg ┆ nw │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ datetime[ns] ┆ str ┆ str ┆ i64 ┆ f64 ┆ f64 │
╞══════════════╪══════╪═══════╪═════╪═════╪═════╡
└──────────────┴──────┴───────┴─────┴─────┴─────┘