Home > OS >  python: custom pandas.DataFrame to dictionary function: some entries are lost
python: custom pandas.DataFrame to dictionary function: some entries are lost

Time:08-20

I want to read a .xlsx file, do some things with the data and convert it to a dict to save it in a .json file. To do that I use Python3 and pandas.

This is the code:

import pandas as pd
import json

xls = pd.read_excel(
    io = "20codmun.xlsx",
    converters = {
        "CODAUTO" : str,
        "CPRO" : str,
        "CMUN" : str,
        "DC" : str
        }
    )

print(xls)
#print(xls.columns.values)

outDict = {}

print(len(xls["NOMBRE"])) # 8131 rows

for i in range(len(xls.index)):
    
    codauto = xls["CODAUTO"][i]
    cpro = xls["CPRO"][i]
    cmun = xls["CMUN"][i]
    dc = xls["DC"][i]
    aemetId = cpro   cmun
    
    outDict[xls["NOMBRE"][i]] = {
        "CODAUTO" : codauto,
        "CPRO" : cpro,
        "CMUN" : cmun,
        "DC" : dc,
        "AEMET_ID" : aemetId
        }

print(i) # 8130
print(len(outDict)) # 8114 entries, SOME ENTIRES ARE LOST!!!!!

#print(outDict["Petrer"])

with open("data.json", "w") as outFile:
    json.dump(outDict, outFile)

I add here the source of the .xlsx file (Spanish government). Select "Fichero con todas las provincias". You have to delete the first row.

As you can see, the pandas.DataFrame has 8131 rows, the for index at the end is 8130, but the length of the final dict is 8114, so some data is lost!

You can check that "Aljucén" is on the .xlsx file, but not in the .json one.

CodePudding user response:

I have analyzed the file and seems like some "NOMBRE" values are duplicated. Try executing xls["NOMBRE"].value_counts() and you will see that for example "Sada" is twice. You will also see that the unique values are 8114 exactly.

As you are using the city name as the dictionary key, when the key is duplicated, you are modifying the previous value of the dict.

CodePudding user response:

I agree with gontxomde that if column "NOMBRE" has not only unique values, than it may lead to overwriting this key in the new dictionary.

To make a proof of concept I made a minimal example based on your approach:

import pandas as pd

feature_str = ['a', 'b', 'c']
df = pd.DataFrame({"NOMBRE": [1, 1, 3], 
                   "CODAUTO": feature_str,
                   "CPRO" : feature_str,
                   "CMUN" : feature_str,
                   "DC" : feature_str
                   })
outDict = {}

print(len(df["NOMBRE"])) # 8131 rows

for i in range(len(df.index)):
    
    codauto = df["CODAUTO"][i]
    cpro = df["CPRO"][i]
    cmun = df["CMUN"][i]
    dc = df["DC"][i]
    aemetId = cpro   cmun
    
    outDict[df["NOMBRE"][i]] = {
        "CODAUTO" : codauto,
        "CPRO" : cpro,
        "CMUN" : cmun,
        "DC" : dc,
        "AEMET_ID" : aemetId
        }
print(outDict)

Which yields:

{1: {'CODAUTO': 'b', 'CPRO': 'b', 'CMUN': 'b', 'DC': 'b', 'AEMET_ID': 'bb'},
 3: {'CODAUTO': 'c', 'CPRO': 'c', 'CMUN': 'c', 'DC': 'c', 'AEMET_ID': 'cc'}}

If I could suggest, instead of iterating over the index of the DataFrame, it would be better to use DataFrame methods:

df.set_index("NOMBRE") \
  .to_dict(orient='index')

If you would use this in a dataset with unique values at NOMBRE, it would yield the same result, than the function you created. Additionally, in case you had duplicates it would raise an ValueError:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Input In [15], in <module>
----> 1 df.set_index("NOMBRE").to_dict(orient='index')

File ~/.pyenv/versions/3.8.7/envs/jupyter/lib/python3.8/site-packages/pandas/core/frame.py:1607, in DataFrame.to_dict(self, orient, into)
   1605 elif orient == "index":
   1606     if not self.index.is_unique:
-> 1607         raise ValueError("DataFrame index must be unique for orient='index'.")
   1608     return into_c(
   1609         (t[0], dict(zip(self.columns, t[1:])))
   1610         for t in self.itertuples(name=None)
   1611     )
   1613 else:

ValueError: DataFrame index must be unique for orient='index'.

CodePudding user response:

If you have duplicated values in xls["NOMBRE"], each new duplicated will overwrite the previous one. So, you need to choose the strategy deal with duplicates, e.g. do you want different entries, like Sada and Sada(2)? Or do you want a single key Sada with the data from all the duplicates?

For the first example:

for i in range(len(xls.index)):

    # if it's the first time the value appears, just do the "normal" thing
    if xls["NOMBRE"][i] not in outDict.keys():
        outDict[xls["NOMBRE"][i]] = {
            "CODAUTO" : codauto,
            "CPRO" : cpro,
            "CMUN" : cmun,
            "DC" : dc,
            "AEMET_ID" : aemetId
            }

    # if the value was read before, add number of duplicate after the name
    else:
        for i in range(1, xls['NOMBRE'].value_counts()[xls["NOMBRE"][i]]):
            if xls["NOMBRE"][i]   '('   str(i 1)   ')' not in outDict.keys():
                outDict[xls["NOMBRE"][i]   '('   str(i 1)   ')'] = {
                    "CODAUTO" : codauto,
                    "CPRO" : cpro,
                    "CMUN" : cmun,
                    "DC" : dc,
                    "AEMET_ID" : aemetId
                    }

For the second case, there're good solutions here and here.

  • Related