I have a dataframe with same columnNames.I want to remove one particular repeated column.
In the below data frame, I want to remove all columns with Name Numbers and keep Alphabets. How could I achieve this
data = pd.DataFrame({'Alphabets': ['A', 'B', 'C'],
'Numbers': ['1', '2', '3'],
'Alphabets': ['D', 'E', 'F'],
'Numbers': ['10', '11', '12'],
'Alphabets': ['G', 'H', 'I'],
'Numbers': ['13', '14', '15']})
CodePudding user response:
You can call the .drop
method of pd.DataFrame
and specify a list of columns you want to drop.
In your case that would be:
data = data.drop(columns=['Numbers'])
CodePudding user response:
Try removing any columns that match with a specific term, like this:
df= df.loc[:, ~df.columns.str.match('Numbers')]
It will remove any columns that contains Numbers as names