I don't make to many complicated functions and typically stick with very basic ones. I have a question, how do I create a function that takes a dataset and normalizes based on desired normalization method and boxplots the output? Currently norm_method is different between the norm methods, was wondering if there is a way to call this in the start of function to pull through the correct method? Below is the code I created, but am stuck how to proceed.
library(reshape2) # for melt
library(cowplot)
demoData;
# target_deoData will need to be changed at some point
TestFunc <- function(demoData) {
# Q3 norm (75th percentile)
target_demoData <- normalize(demoData ,
norm_method = "quant",
desiredQuantile = .75,
toElt = "q_norm")
# Background normalization without spike
target_demoData <- normalize(demoData ,
norm_method = "neg",
fromElt = "exprs",
toElt = "neg_norm")
boxplot(assayDataElement(demoData[,1:10], elt = "q_norm"),
col = "red", main = "Q3",
log = "y", names = 1:10, xlab = "Segment",
ylab = "Counts, Q3 Normalized")
boxplot(assayDataElement(demoData[,1:10], elt = "neg_norm"),
col = "blue", main = "Neg",
log = "y", names = 1:10, xlab = "Segment",
ylab = "Counts, Neg. Normalized")
}
CodePudding user response:
You might want to consider designing your normalize()
and assayDataElement()
functions to take ...
, which provides more flexibility.
In lieu of that, given the examples above, you could make a simple configuration list, and elements of that configuration are passed to your normalize()
and assayDataElement()
functions, like this:
TestFunc <- function(demoData, method=c("quant", "neg")) {
method = match.arg(method)
method_config = list(
"quant" = list("norm_args" = list("norm_method" = "quant", desired_quantile = 0.75, "toElt" = "q_norm"),
"plot_args" = list("col"="red", main="Q3", ylab = "Counts, Q3 Normalized")),
"neg" = list("norm_args" = list("fromElt" = "exprs", "toElt" = "neg_norm"),
"plot_args" = list("col"="blue", main="Neg", ylab = "Counts, Neg Normalized"))
)
mcn = method_config[[method]][["norm_args"]]
mcp = method_config[[method]][["plot_args"]]
# normalize the data
target_demoData = do.call(normalize, c(list(data = demoData[1:10]), mcn))
# get the plot
boxplot(assayDataElement(
demoData[1:10], elt=mcp[["toElt"]],col = mcp[["col"],main = mcp[["main"]],
log = "y", names = 1:10, xlab = "Segment",ylab = mcp[["ylab"]]
)
}
Again, using this approach is not as flexible as ...
(and consider splitting into two functions.. one that returns normalized data, and a second function that generates the plot..