Home > OS >  Is there a way to remove the last template parameter of variadic template methods?
Is there a way to remove the last template parameter of variadic template methods?

Time:09-13

I'm working on creating a simple reflector in C 11, it stores function pointers of instances functions as:

static std::unordered_map<std::string, std::pair<void(EmptyClass::*)(void), int>>* methods;
template<typename ClassType, typename returnType, typename... Args>
static void RegistFunction(std::string name, returnType(ClassType::* func)(Args... args)) {
    (*methods)[name] = std::make_pair((void(EmptyClass::*)())func, sizeof...(Args));
}

template<typename ReturnType, typename ClassType, typename... Args>
static ReturnType ExecuteFunction(ClassType* object, std::string name, Args... args) {
    if (object == NULL) return;
    ReturnType(ClassType:: * func)(Args...) = (ReturnType(ClassType::*)(Args...))(*methods)[name].first;
    return (object->*func)(std::forward<Args>(args)...);
}

But when I want to call ExecuteFunction, the number of arguments may be more than the number that function pointer actually accepts. So I need to remove some arguments from the tail of argument list, but it seems I can only remove from head.

template<typename ReturnType, typename ClassType, typename Arg, typename... Args>
    static ReturnType ExecuteFunction(ClassType* object, std::string name, Arg arg, Args... args) {
        if (sizeof...(Args)   1 > (*methods)[name].second) {
            return ExecuteFunction<ReturnType>(std::forward<ClassType*>(object), std::forward<std::string>(name), std::forward<Args>(args)...);
        }
        if (object == NULL) return;
        ReturnType(ClassType:: * func)( Arg, Args...) = (ReturnType(ClassType::*)(Arg, Args...))(*methods)[name].first;
        return (object->*func)(std::forward<Arg>(arg), std::forward<Args>(args)...);
    }

Is there any solution to remove arguments at the tail of variadic method template?

CodePudding user response:

Here's a C 11 implementation depending only on std::string and std::unordered_map. Some mandatory remarks:

  • As mentioned, this is extremely brittle due to inferring the function type by the provided arguments. This is UB waiting to happen.
  • method really shouldn't be a pointer.
  • If your return type is not assignable, this will break spectacularly.
  • The class pointer really should be a reference instead.
  • If you think the implementation is insane, then yes, it is indeed, and you should give up on being fully generic.

A C 11 implementation of std::index_sequence and friends can be found here.

See it in action.

template<typename...>
struct typelist {};

template<size_t, typename, typename, typename, typename>
struct call;

template<size_t N, typename R, typename C, typename... Accum, typename Head, typename... Tail>
struct call<N, R, C, typelist<Accum...>, typelist<Head, Tail...>>
    : call<N, R, C, typelist<Accum..., Head>, typelist<Tail...>>
{
};

template<typename R, typename C, typename... Accum, typename Head, typename... Tail>
struct call<sizeof...(Accum), R, C, typelist<Accum...>, typelist<Head, Tail...>>
{
    template<typename... Ts>
    int operator()(Ts&&...)
    {
        return 0;
    }

    template<typename... Ts>
    int operator()(R& ret, void (EmptyClass::* g)(), C& obj, Accum&... args, Ts&&...)
    {
        auto f = (R (C::*)(Accum...))g;
        ret = (obj.*f)(std::move(args)...);
        return 0;
    }
};

template<typename R, typename C, typename... Args, size_t... Is>
R switcher(int i, index_sequence<Is...>, void (EmptyClass::* g)(), C& obj, Args&... args)
{
    R ret{};
    int unused[] = {(i == Is ?
                   call<Is, R, C, typelist<>, typelist<Args..., void>>{}(ret, g, obj, args...)
                   : 0)...};

    (void)unused;
    return ret;
}

template<typename C, typename R, typename... Args>
void reg(std::string name, R (C::* func)(Args... args)) {
    (*methods)[name] = std::make_pair((void (EmptyClass::*)())func, sizeof...(Args));
}

template<typename R, typename C, typename... Args>
R exec(C* obj, std::string name, Args... args) {
    if(obj == nullptr)
        throw "a tantrum";
    
    auto& info = (*methods)[name];
    auto g = info.first;
    size_t i = info.second;
    if(i > sizeof...(Args))
        throw "a fit";

    return switcher<R>(i, make_index_sequence<sizeof...(Args)   1>{}, g, *obj, args...);
}

CodePudding user response:

To continue the old-way, you might do it pre-C 11 with hard-coded limit:

// No args
template<typename ReturnType, typename ClassType>
static ReturnType ExecuteFunction(ClassType* object, std::string name)
{
    switch ((*methods)[name].second) {
        case 0: {
            if (object == NULL) return {};
            auto func = (ReturnType(ClassType::*)())((*methods)[name].first);
            return (object->*func)();
        }
        default: throw std::runtime_error("Wrong argument");
    }
}

// One arg
template<typename ReturnType, typename ClassType, typename T1>
static ReturnType ExecuteFunction(ClassType* object, std::string name, T1 arg1)
{
    switch ((*methods)[name].second) {
        case 0: return ExecuteFunction(object, name);
        case 1: {
            if (object == NULL) return {};
            auto func = (ReturnType(ClassType::*)(T1))((*methods)[name].first);
            return (object->*func)(std::forward<T1>(arg1));
        }
        default: throw std::runtime_error("Wrong argument");
    }
}

// Two args
template<typename ReturnType, typename ClassType, typename T1, typename T2>
static ReturnType ExecuteFunction(ClassType* object, std::string name, T1 arg1, T2 arg2)
{
    switch ((*methods)[name].second) {
        case 0: return ExecuteFunction(object, name);
        case 1: return ExecuteFunction(object, name, std::forward<T1>(arg1));
        case 2: {
            if (object == NULL) return {};
            auto func = (ReturnType(ClassType::*)(T1, T2))((*methods)[name].first);
            return (object->*func)(std::forward<T1>(arg1), std::forward<T2>(arg2));
        }
        default: throw std::runtime_error("Wrong argument");
    }
}

// .. up to reasonable limit.
  • Related