I have the following dataframe, observations are grouped in pairs. NaN
here represents different products traded in pair wrt A
. I want to groupby transaction and compute
A/NaN
so that the value for all NaN
s can be expressed in unit A.
transaction name value ...many other columns
1 A 3
1 NaN 5
2 NaN 7
2 A 6
3 A 4
3 NaN 3
4 A 10
4 NaN 9
5 C 8
5 A 6
..
Thus the desired df would be
transaction name value new_column ...many other columns
1 A 3 NaN
1 NaN 6 0.5
2 NaN 7 0.8571
2 A 6 NaN
3 A 4 1.333
3 NaN 3 NaN
4 A 10 1.111
4 NaN 9 NaN
5 C 8 0.75
5 A 6 NaN
...
CodePudding user response:
First filter rows with A
and convert transaction
to index
for possible divide rows with missing value by mapped transaction
by Series.map
:
m = df['name'].ne('A')
s = df[~m].set_index('transaction')['value']
df.loc[m, 'new_column'] = df.loc[m, 'transaction'].map(s) / df.loc[m, 'value']
print (df)
transaction name value new_column
0 1 A 3 NaN
1 1 NaN 5 0.600000
2 2 NaN 7 0.857143
3 2 A 6 NaN
4 3 A 4 NaN
5 3 NaN 3 1.333333
6 4 A 10 NaN
7 4 NaN 9 1.111111
8 5 NaN 8 0.750000
9 5 A 6 NaN
EDIT: There is multiple A
values per groups, not only one, possible solution is removed duplicates:
print (df)
transaction name value
0 1 A 3
1 1 A 4
2 1 NaN 5
3 2 NaN 7
4 2 A 6
5 3 A 4
6 3 NaN 3
7 4 A 10
8 4 NaN 9
9 5 C 8
10 5 A 6
# s = df[~m].set_index('transaction')['value']
# df.loc[m, 'new_column'] = df.loc[m, 'transaction'].map(s) / df.loc[m, 'value']
# print (df)
#InvalidIndexError: Reindexing only valid with uniquely valued Index objects
m = df['name'].ne('A')
print (df[~m].drop_duplicates(['transaction','name']))
transaction name value
0 1 A 3
4 2 A 6
5 3 A 4
7 4 A 10
10 5 A 6
s = df[~m].drop_duplicates(['transaction','name']).set_index('transaction')['value']
df.loc[m, 'new_column'] = df.loc[m, 'transaction'].map(s) / df.loc[m, 'value']
print (df)
transaction name value new_column
0 1 A 3 NaN <- 2 times a per 1 group
1 1 A 4 NaN <- 2 times a per 1 group
2 1 NaN 5 0.600000
3 2 NaN 7 0.857143
4 2 A 6 NaN
5 3 A 4 NaN
6 3 NaN 3 1.333333
7 4 A 10 NaN
8 4 NaN 9 1.111111
9 5 C 8 0.750000
10 5 A 6 NaN
CodePudding user response:
Assuming there are only two values per transaction, you can use agg
and divide the first and last element by each other:
df.loc[df['name'].isna(), 'new_column'] = df.sort_values(by='name').\
groupby('transaction')['value'].\
agg(f='first', l='last').agg(lambda x: x['f'] / x['l'], axis=1)