I've started learning numpy
since yesterday.
my AIM is
Extract odd index
elements from numpy array & even index
elements from numpy and merge side by side vertically.
Let's say I have the array
mat = np.array([[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]])
What I've tried.
-->I've done transposing as I've to merge side by by side vertically.
mat = np.transpose(mat)
Which gives me
[[1 0 1 0 1]
[1 1 0 0 0]
[0 0 0 0 1]
[0 0 1 0 0]
[0 1 1 0 1]]
I've tried accessing odd index elements
odd = mat[1::2] print(odd)
Gives me
[[1 1 0 0 0]
----> wrong...should be [0,1,0,0,1]
right? I'm confused
[0 0 1 0 0]]
--->wrong...Should be [0,0,0,0,0]
right? Where these are coming from?
My final output should like like
[[0 0 1 1 1]
[1 0 1 0 0]
[0 0 0 0 1]
[0 0 0 1 0]
[1 0 0 1 1]]
Type - np.nd array
CodePudding user response:
Looks like you want:
mat[np.r_[1:mat.shape[0]:2,:mat.shape[0]:2]].T
Output:
array([[0, 0, 1, 1, 1],
[1, 0, 1, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 1, 0],
[1, 0, 0, 1, 1]])
Intermediate:
np.r_[1:mat.shape[0]:2,:mat.shape[0]:2]
output: array([1, 3, 0, 2, 4])
CodePudding user response:
While the selection of rows is straight forward, there are various ways of combining them.
In [244]: mat = np.array([[1, 1, 0, 0, 0],
...: [0, 1, 0, 0, 1],
...: [1, 0, 0, 1, 1],
...: [0, 0, 0, 0, 0],
...: [1, 0, 1, 0, 1]])
The odd rows:
In [245]: mat[1::2,:] # or mat[1::2]
Out[245]:
array([[0, 1, 0, 0, 1],
[0, 0, 0, 0, 0]])
The even rows:
In [246]: mat[0::2,:]
Out[246]:
array([[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
[1, 0, 1, 0, 1]])
Joining the rows verticallly (np.vstack
can also be used):
In [247]: np.concatenate((mat[1::2,:], mat[0::2,:]), axis=0)
Out[247]:
array([[0, 1, 0, 0, 1],
[0, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
[1, 0, 1, 0, 1]])
But since you want columns - tranpose:
In [248]: np.concatenate((mat[1::2,:], mat[0::2,:]), axis=0).transpose()
Out[248]:
array([[0, 0, 1, 1, 1],
[1, 0, 1, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, 0, 1, 0],
[1, 0, 0, 1, 1]])
We could transpose the selections first:
np.concatenate((mat[1::2,:].T, mat[0::2,:].T), axis=1)
or transpose before indexing (note the change in the ':' slice position):
np.concatenate((mat.T[:,1::2], mat.T[:,0::2]), axis=1)
The r_
in the other answer converts the slices into arrays and concatenates them, to make one row indexing array. That's equally valid.
CodePudding user response:
So here alternate is the logic you can use.
1. convert array to list
2. Access nested list items based on mat[1::2] - odd & mat[::2] for even
3. concat them using np.concat at `axis =0` vertically.
4. Transpose them.
Implementaion.
mat = np.array([[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]])
mat_list = mat.tolist() ##############Optional
l_odd = mat_list[1::2]
l_even= mat_list[::2]
mask = np.concatenate((l_odd, l_even), axis=0)
mask = np.transpose(mask)
print(mask)
output #
[[0 0 1 1 1]
[1 0 1 0 0]
[0 0 0 0 1]
[0 0 0 1 0]
[1 0 0 1 1]]
Checking Type
print(type(mask))
Gives
<class 'numpy.ndarray'>