I am running some tests on Conv2D layers in Keras and I don't understand one of the result I am getting.
I am running a simple example to understand what is happening. I take a test array and create a Conv2D layer with 2 filters output. I use simple 3*3 kernel of 1's. I am expecting to have the 2 filters with the same output.
Here is my minimal code sample :
import tensorflow.keras as keras
import functools
from keras import layers
import tensorflow as tf
import tensorflow.keras as keras
import keras.layers as layers
import numpy as np
###define a simple test array
test_array = np.array([[2,2,2,1],[2,1,2,2],[2,2,2,2],[2,2,1,2]],dtype=np.float32)
###reshape to simulate a filter entry of a one channel conv2D layer
test_array = test_array.reshape((1,4,4,1))
###Create conv2Dlayer and initialize
standardConv = layers.Conv2D(filters=2,kernel_size=[3,3])
standardConv(np.ones([1,4,4,1],dtype=np.float32))
###set simple weights for testing
standardConv.set_weights([ np.ones([3,3,1,2]) , np.zeros([2]) ])
###apply convolution layer to test_array
standardConv(test_array)
The result I get is the following :
Out[46]:
<tf.Tensor: shape=(1, 2, 2, 2), dtype=float32, numpy=
array([[[[17., 17.],
[16., 16.]],
[[16., 16.],
[16., 16.]]]], dtype=float32)>
I don't understand the second filter result [[16., 16.], [16., 16.]] What I was expecting was to see the two filters with the same result [[17,17],[16,16]] which corresponds to the convolution of my test_array with a 3x3 kernel of 1's.
The convolution weights are the same for the two filters, just ones (np.ones([3,3,1,2])) and they should be applied to the same input array as far as I understood so I am probably missing something.
Can somebody explain me how we get the second filter result and why it is not the same as the first in this case ?
CodePudding user response:
The layout is a bit misleading; both filters give the same correct result.
First filter:
print(standardConv(test_array)[:, :, :, 0])
Output:
tf.Tensor(
[[[17. 16.]
[16. 16.]]], shape=(1, 2, 2), dtype=float32)
Second filter:
print(standardConv(test_array)[:, :, :, 1])
Output:
tf.Tensor(
[[[17. 16.]
[16. 16.]]], shape=(1, 2, 2), dtype=float32)
When you use more filters, for example 5, you will get this output:
tf.Tensor(
[[[[17. 17. 17. 17. 17.]
[16. 16. 16. 16. 16.]]
[[16. 16. 16. 16. 16.]
[16. 16. 16. 16. 16.]]]], shape=(1, 2, 2, 5), dtype=float32)