Home > OS >  creating data frame from text file
creating data frame from text file

Time:12-08

I have a dataset of over 1000 txt files which contains information of books

The Project Gutenberg EBook of Apocolocyntosis, by Lucius Seneca

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org


Title: Apocolocyntosis

Author: Lucius Seneca

Release Date: November 10, 2003 [EBook #10001]
[Date last updated: April 9, 2005]

Language: English

Character set encoding: ASCII

*** START OF THIS PROJECT GUTENBERG EBOOK APOCOLOCYNTOSIS ***

I'm trying to use pandas to read these files and create a data frame from it getting Title, Author, Release Date, and Language as columns and its values but so far I have been having errors

Reading from a single file

df = pd.read_csv('dataset/10001.txt')

Error

ParserError                               Traceback (most recent call last)
Input In [30], in <cell line: 1>()
----> 1 df = pd.read_csv('dataset/10001.txt')

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\util\_decorators.py:311, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
    305 if len(args) > num_allow_args:
    306     warnings.warn(
    307         msg.format(arguments=arguments),
    308         FutureWarning,
    309         stacklevel=stacklevel,
    310     )
--> 311 return func(*args, **kwargs)

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\io\parsers\readers.py:680, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)
    665 kwds_defaults = _refine_defaults_read(
    666     dialect,
    667     delimiter,
   (...)
    676     defaults={"delimiter": ","},
    677 )
    678 kwds.update(kwds_defaults)
--> 680 return _read(filepath_or_buffer, kwds)

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\io\parsers\readers.py:581, in _read(filepath_or_buffer, kwds)
    578     return parser
    580 with parser:
--> 581     return parser.read(nrows)

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\io\parsers\readers.py:1254, in TextFileReader.read(self, nrows)
   1252 nrows = validate_integer("nrows", nrows)
   1253 try:
-> 1254     index, columns, col_dict = self._engine.read(nrows)
   1255 except Exception:
   1256     self.close()

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\io\parsers\c_parser_wrapper.py:225, in CParserWrapper.read(self, nrows)
    223 try:
    224     if self.low_memory:
--> 225         chunks = self._reader.read_low_memory(nrows)
    226         # destructive to chunks
    227         data = _concatenate_chunks(chunks)

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\_libs\parsers.pyx:805, in pandas._libs.parsers.TextReader.read_low_memory()

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\_libs\parsers.pyx:861, in pandas._libs.parsers.TextReader._read_rows()

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\_libs\parsers.pyx:847, in pandas._libs.parsers.TextReader._tokenize_rows()

File ~\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages\pandas\_libs\parsers.pyx:1960, in pandas._libs.parsers.raise_parser_error()

ParserError: Error tokenizing data. C error: Expected 2 fields in line 60, saw 3

CodePudding user response:

The following code shows how you can tackle the data extraction for one file.
Providing they are all in the same format, then this should be pretty efficient.

  • re.compile : provides the regex to use to find the item of interest
  • had to do some extra manipulation with release_date because of extra text on that line.
  • you could add a for-loop to navigate through the 1000s of books.

Code:

import re
import pandas as pd

with open('dataset/10001.txt', 'r') as text_file:
    text = text_file.read()

# These can be reused for each book    
title = re.compile(r'Title: (.*)\n')
author = re.compile(r'Author: (.*)\n')
release_date = re.compile(r'Release Date: (.*)\s')

book_title = title.search(text).group(1)
book_author = author.search(text).group(1)
book_release = release_date.search(text).group(1).split(' [')[0]

df = pd.DataFrame({"Title": [book_title], "Author": [book_author], "Release_Date": [book_release]})
print(df)

Output:

Dataframe



data.txt

The Project Gutenberg EBook of Apocolocyntosis, by Lucius Seneca

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org


Title: Apocolocyntosis

Author: Lucius Seneca

Release Date: November 10, 2003 [EBook #10001]
[Date last updated: April 9, 2005]

Language: English

Character set encoding: ASCII

*** START OF THIS PROJECT GUTENBERG EBOOK APOCOLOCYNTOSIS ***
  • Related