I am trying to reshape a dataframe using dcast
function of reshape2
package
library(reshape2)
dat = data.frame(aa = c('A', 'B', 'C', 'C', 'B'))
dcast(dat, aa~aa)
This generates below output
aa A B C
1 A 1 0 0
2 B 0 2 0
3 C 0 0 2
However I wanted to keep the number of rows same as my original dataframe as below
Is there any direct function to get my desired shape?
Thanks for your time.
CodePudding user response:
With tidyverse or base R you can do:
dat = data.frame(aa = c('A', 'B', 'C', 'C', 'B'))
library(tidyverse)
dat %>%
mutate(id = seq_along(aa), val = 1) %>%
tidyr::pivot_wider(names_from = aa, values_from = val, values_fill = 0) %>%
select(-id)
#> # A tibble: 5 × 3
#> A B C
#> <dbl> <dbl> <dbl>
#> 1 1 0 0
#> 2 0 1 0
#> 3 0 0 1
#> 4 0 0 1
#> 5 0 1 0
as.data.frame(sapply(unique(dat$aa), \(x) as.numeric(x == dat$aa)))
#> A B C
#> 1 1 0 0
#> 2 0 1 0
#> 3 0 0 1
#> 4 0 0 1
#> 5 0 1 0
CodePudding user response:
You could add first an id column with row_number
and spread
the aa column to your desired output but with the columnames as values. To replace
these you can replace everything
across
the columns if it is not 0 with 1 like this:
dat = data.frame(aa = c('A', 'B', 'C', 'C', 'B'))
library(dplyr)
library(tidyr)
dat %>%
mutate(id = row_number()) %>%
spread(aa, aa, fill = 0) %>%
select(-id) %>%
mutate(across(everything(), ~ replace(., . != 0, 1)))
#> A B C
#> 1 1 0 0
#> 2 0 1 0
#> 3 0 0 1
#> 4 0 0 1
#> 5 0 1 0
Created on 2022-12-26 with reprex v2.0.2