I want to write a train function in a class for training a model; The following code reported an error; can anyone give me a hint for solving this issue?
import numpy as np
import os
import sys
sys.executable
sys.version
##define a neuralnet class
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
os.chdir("/Users/zhangzhongheng/Downloads/")
os.getcwd()
#Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
def model_train(self,dataloader):
self.train()
size = len(dataloader.dataset)
optimizer = torch.optim.SGD(self.parameters(), lr=1e-3)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = self.forward(X)
loss = nn.CrossEntropyLoss(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
Model = NeuralNetwork()
epochs = 5
for t in range(epochs):
print(f"Epoch {t 1}\n-------------------------------")
Model.model_train(train_dataloader)
print("Done!")
The above code reported the following error:
Epoch 1
-------------------------------
RuntimeError: Boolean value of Tensor with more than one value is ambiguous
Done!
CodePudding user response:
Changing nn.CrossEntropyLoss
to nn.CrossEntropyLoss()
should solve this problem.
Refer to the official documentation here.
It will look something like this loss = nn.CrossEntropyLoss()(pred, y)