Home > OS >  Create all permutations of size N of the digits 0-9 - as optimized as possible using numpy\scipy
Create all permutations of size N of the digits 0-9 - as optimized as possible using numpy\scipy

Time:01-01

i need to create an array of all the permutations of the digits 0-9 of size N (input, 1 <= N <= 10).

I've tried this:

np.array(list(itertools.permutations(range(10), n)))

for n=6:

timeit np.array(list(itertools.permutations(range(10), 6)))

on my machine gives:

68.5 ms ± 881 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

But it simply not fast enough. I need it to be below 40ms.

Note: I cannot change the machine from numpy version 1.22.3

CodePudding user response:

Refer to the link provided by @KellyBundy to get a fast method:

def permutations_(n, k):
    a = np.zeros((math.perm(n, k), k), np.uint8)
    f = 1
    for m in range(n - k   1, n   1):
        b = a[:f, n - m   1:]
        for i in range(1, m):
            a[i * f:(i   1) * f, n - m] = i
            a[i * f:(i   1) * f, n - m   1:] = b   (b >= i)
        b  = 1
        f *= m
    return a

Simple test:

In [125]: %timeit permutations_(10, 6)
3.96 ms ± 42.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [128]: np.array_equal(permutations_(10, 6), np.array(list(permutations(range(10), 6))))
Out[128]: True

Old answer

Using itertools.chain.from_iterable to concatenate iterators of each tuple to construct array lazily can get a little improvement:

In [94]: from itertools import chain, permutations

In [95]: %timeit np.array(list(permutations(range(10), 6)), np.int8)
63.2 ms ± 500 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [96]: %timeit np.fromiter(chain.from_iterable(permutations(range(10), 6)), np.int8).reshape(-1, 6)
28.4 ms ± 110 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

@KellyBundy proposed a faster solution in the comments area, using the fast iteration in the bytes constructor and buffer protocol. It seems that the numpy.fromiter wasted a lot of time in iteration:

In [98]: %timeit np.frombuffer(bytes(chain.from_iterable(permutations(range(10), 6))), np.int8).reshape(-1, 6)
11.3 ms ± 23.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

However, it should be noted that the above results are read-only (thanks for @MichaelSzczesny's reminder):

In [109]: ar = np.frombuffer(bytes(chain.from_iterable(permutations(range(10), 6))), np.int8).reshape(-1, 6)

In [110]: ar[0, 0] = 1
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In [110], line 1
----> 1 ar[0, 0] = 1

ValueError: assignment destination is read-only
  • Related