Assume I have the dataframe df and I want to slice this in multiple dataframes and store each in a list (list_of_dfs).
Each sub-dataframe should only contain the rows "Result". One sub-dataframe starts, when in column "Point" the value "P1" and in column "X_Y" the value "X" is given.
I tried this with first finding the indicies of each "P1" and then slicing the overall dataframe within a list comprehension using the indicies of "P1". But I receive a list with two empty dataframes. Can someone advise? Thanks!
import pandas as pd
df = pd.DataFrame(
{
"Step": (
"1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "Result", "Result", "Result", "Result", "Result",
"1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "Result", "Result", "Result", "Result", "Result"
),
"Point": (
"P1", "P2", "P2", "P3", "P3", "P1", "P2", "P2", "P3", "P3", "P1", "P2", "P2", "P3", "P3",
"P1", "P2", "P2", "P3", "P3", "P1", "P2", "P2", "P3", "P3", "P1", "P2", "P2", "P3", "P3",
),
"X_Y": (
"X", "X", "Y", "X", "Y", "X", "X", "Y", "X", "Y", "X", "X", "Y", "X", "Y",
"X", "X", "Y", "X", "Y", "X", "X", "Y", "X", "Y", "X", "X", "Y", "X", "Y",
),
"Value A": (
70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72,
70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72,
),
"Value B": (
70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72,
70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72, 70, 68, 66.75, 68.08, 66.72,
),
}
)
dff = df.loc[df["Step"] == "Result"]
value = "P1"
tuple_of_positions = list()
result = dff.isin([value])
seriesObj = result.any()
columnNames = list(seriesObj[seriesObj == True].index)
for col in columnNames:
rows = list(result[col][result[col] == True].index)
for row in rows:
tuple_of_positions.append((row, col))
length_of_one_df = (len(dff["Point"].unique().tolist()) * 2 ) - 1
list_of_dfs = [dff.iloc[x : x length_of_one_df] for x in rows]
print(list_of_dfs)
CodePudding user response:
sub = df.query("Step == \"Result\"")
pivots = sub[["Point", "X_Y"]].eq(["P1", "X"]).all(axis=1)
out = [fr for _, fr in sub.groupby(pivots.cumsum())]
- get the subset of the frame where Step is equal to "Result"
- check in which rows there is "P1" and "X" sequence
- that gives a True/False series
- cumulative sum of it determines the group as the "pivoting" (turning) points will be True since False == 0 in numeric context
- iterating over a GroupBy object yields "group_label, sub_frame" pairs, out of which we pull the sub_frames
to get
>>> out
[ Step Point X_Y Value A Value B
10 Result P1 X 70.00 70.00
11 Result P2 X 68.00 68.00
12 Result P2 Y 66.75 66.75
13 Result P3 X 68.08 68.08
14 Result P3 Y 66.72 66.72,
Step Point X_Y Value A Value B
25 Result P1 X 70.00 70.00
26 Result P2 X 68.00 68.00
27 Result P2 Y 66.75 66.75
28 Result P3 X 68.08 68.08
29 Result P3 Y 66.72 66.72]
where the intermediares were
>>> sub
Step Point X_Y Value A Value B
10 Result P1 X 70.00 70.00
11 Result P2 X 68.00 68.00
12 Result P2 Y 66.75 66.75
13 Result P3 X 68.08 68.08
14 Result P3 Y 66.72 66.72
25 Result P1 X 70.00 70.00
26 Result P2 X 68.00 68.00
27 Result P2 Y 66.75 66.75
28 Result P3 X 68.08 68.08
29 Result P3 Y 66.72 66.72
>>> pivots
10 True
11 False
12 False
13 False
14 False
25 True
26 False
27 False
28 False
29 False
dtype: bool
# groups
>>> pivots.cumsum()
10 1
11 1
12 1
13 1
14 1
25 2
26 2
27 2
28 2
29 2
dtype: int32