:
I taking the confirm cases of data from here : https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
I load the data in python using Pandas Dataframe .
my problem is : i am trying to make the columns of the date as rows , and the ' Country/Region' column as columns .
url_confirmed = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'
df = pd.read_csv(url_confirmed)
df = df.drop(columns=['Province/State','Lat','Long'],axis=1)
df_piv = pd.melt(df,id_vars=['Country/Region'],var_name='Date',value_name="Value")
I get until here and really don't know how to proceed
my final dataframe suppose to look like this :
Date Afghanistan Albania and so on
0 1/22/20 0 val
1 1/23/20 300 val
3 1/24/20 4023 val
6 1/25/20 300 val
7 1/26/20 2000 val
8 .. ..
.
.
**Thank You Very Much **
CodePudding user response:
I think a simple transpose with renaming a column should do it:
url_confirmed = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'
df = pd.read_csv(url_confirmed)
df = df.drop(columns=['Province/State','Lat','Long'],axis=1)
df = df.T.reset_index() # Transpose and reset index
df.columns = df.iloc[0] # Set first row as header
df = df[1:]
df.rename(columns = {'Country/Region' : 'Date'}, inplace=True)