I did create a machine learning model using Pytorch which i want to use as a webservice using Flask. The problem is that i don't understand how i can pass a json-String to the url. Below is my code that I wrote to do some tryouts with my model and Flask:
from modelLoader import Model
from imageLoader import Img
import os
from flask import Flask, jsonify, request
app = Flask(__name__)
classes = ["dummy-image", "product-image"]
model_path = os.path.join("data", "models", "model1709", "model1709")
image_path = os.path.join("data", "images", "dummy_images")
m1 = Model(model_path, classes, "cpu")
@app.route('/predict', methods=['POST', 'GET'])
def predict():
# case for handle json
input_data = request.get_json()['url']
if isinstance(input_data, list):
for elem in input_data:
img_elem = Img(url=elem)
res = img_elem.get_prediction(m1)
return jsonify({"type": "bulk_upload"})
img_inpdata = Img(url=input_data)
res, info = img_inpdata.get_prediction(m1)
return jsonify({input_data: res, "info": str(info)})
if __name__ == '__main__':
app.run(debug=True)
This would be a request that I want to make using this code:
POST http://192.168.178.13:5000/predict HTTP/1.1
Content-Type: application/json
Accept: application/json
{
"url" : "https://socialistmodernism.com/wp-content/uploads/2017/07/placeholder-image.png"
}
How exactly can I get the prediction for the image inside the json-string, by passing this json-string to the application?
Here the two classes model and imageLoader for completeness:
from torch import argmax, device, load, nn
class Model:
def __init__(self, path, class_list=None, dvc=None):
if class_list is None:
class_list = [0, 1]
if dvc is None:
dvc = 'cpu'
self.class_list = class_list
self.model = load(path, map_location=device(dvc))
num_ftrs = self.model.fc.in_features
self.model.fc = nn.Linear(num_ftrs, len(class_list))
self.model.eval()
import torchvision.transforms as transforms
import io
from PIL import Image
from torch import argmax, device, load, nn
import requests
class Img:
def __init__(self, url=None, image=None, image_bytes=None):
if url:
img = Image.open(requests.get(url, stream=True).raw)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format=img.format)
self.image_bytes = img_byte_arr.getvalue()
elif image:
f = image.read()
self.image_bytes = bytearray(f)
elif image_bytes:
self.image_bytes = image_bytes
def transform_image(self):
data_transforms = transforms.Compose([transforms.Resize((224, 224)),
transforms.CenterCrop(
224), transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224,
0.225])])
image = Image.open(io.BytesIO(self.image_bytes)).convert('RGB')
return data_transforms(image).unsqueeze(0)
def get_prediction(self, model):
tensor = self.transform_image()
output = (model.model(tensor))
sm = nn.Softmax(output)
best = output.argmax().item()
return model.class_list[best], sm
CodePudding user response:
This is an example how I've implemented it for myself in the past:
Server part that receives json
:
from flask import request
from flask import Response
@app.route('/stats/online', methods=['POST'])
def record_online_stats():
# ... validation before the mongo
result = ws_mongo.process_online(request.get_data(as_text=True), token)
if result:
return Response(status=200)
else:
return Response(status=406)
Preparing and sending data from the client:
def __publish_game_stats():
try:
data = str(__get_game_stats_json())
# Convert string to byte
data = data.encode('utf-8')
# Post Method is invoked if data != None
headers = {'content-type': 'application/json', 'token': ''}
req = request.Request(STATS_PUBLISHER_GAME_STATE_URL, data=data, headers=headers)
# Response
resp = request.urlopen(req)
code = resp.getcode()
return code
def __get_game_stats_json():
return json.dumps(_Game(),
default=lambda x: x.__dict__,
skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, sort_keys=False)
Data-structure example (removed unnecessary parts):
class _Game(object):
def __init__(self):
self.map_name = ...
self.teams = {}
self.online = 0
self.__init_teams()
def __init_teams(self):
for i in range(...):
self.teams[i] = _Game.GTeam(i)
# fill teams with players
for x in range(...):
p = _Game.GPlayer(name=..., uid=...)
self.teams[team_id].players.append(p)
class GTeam(object):
def __init__(self, team_id):
self.team_id = team_id
self.team_name = ''
def __str__(self):
return str(self.__dict__)
class GPlayer(object):
def __init__(self, name: str, uid: int):
self.name = name
self.uid = uid
def __str__(self):
return str(self.__dict__)
def __str__(self):
return str(self.__dict__)
As you can see you can form a more complex structure (_Game
has GTeam
that has GPlayer
) and then with the help of the __get_game_stats_json
to form a json that can be sent to the server. As for me it was ok since I could operate with the classes and to persist them in the same time.
CodePudding user response:
I am sorry because I can't able to test it on my environment. But I noticed what you are doing wrong.
from modelLoader import Model
from imageLoader import Img
import os
from flask import Flask, jsonify, request
app = Flask(__name__)
classes = ["dummy-image", "product-image"]
model_path = os.path.join("data", "models", "model1709", "model1709")
image_path = os.path.join("data", "images", "dummy_images")
m1 = Model(model_path, classes, "cpu")
@app.route('/predict', methods=['POST', 'GET'])
def predict():
# case for handle json
input_data = request.get_json(force=True)['url'] #Try force=True. Because many flask didn't extract the json from the request.
if isinstance(input_data, list):
for elem in input_data:
img_elem = Img(url=elem)
res = img_elem.get_prediction(m1)
return jsonify({"type": "bulk_upload"})
img_inpdata = Img(url=input_data)
res, info = img_inpdata.get_prediction(m1)
return jsonify({"input_data": res, "info": str(info)}) # You need to wrap it "" like "input_data"
if __name__ == '__main__':
app.run(debug=True)
Try this and if still not works. Please consider sharing the logs. What really happening. Because it's really hard to get to know what's wrong happening with you flask app.