Home > other >  Electrical prospecting test code
Electrical prospecting test code

Time:09-19

Resistivity method numerical simulation experiments and induced polarization method digital simulation experiment report
O the matlab code
The data is easy to understand better

CodePudding user response:

Ha ha you are new, here is my code, discuss,
Dy=1
Ny=101
Ymin=50
-Dx=1
Nx=101
Xmin=50
-X=xmin: dx: (xmin + (nx - 1) * dx)
Y=ymin: dy (ymin + (ny - 1) * dy)
[X, Y)=meshgrid (X, Y)
P1=10
U=0.02
R=5
H=9
Intermediate gradient device %
Ps=p1. * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (2 * h ^ 2 - x. ^ 2))/(h ^ 2 + x ^ 2). ^ 5/2]
Plot (x, ps), title (' main plane surface abnormal middle gradient)
grid on;
Hold on
J=0
Figure
For y=- 5:1:5
J=j + 1
Ps=p1. * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (2 * h ^ 2 - x. y ^ ^ 2 + 2)./(h ^ 2 + x ^ 2 + y ^ 2). ^ 5/2]
Q (j)=plot (x, ps)
Hold on
End
grid on;
The title (' intermediate gradient change with plane surface location ')
Figure
Ps=p1. * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (h ^ 2 - (2 * X) ^ 2 + Y) ^ 2))/(h ^ 2 + X ^ 2 + Y) ^ 2). ^ 5/2]
Pcolor (X, Y, ps); Shading interp
The title (' intermediate gradient contour map)
% joint plane surface
MN=4
AM=10
The AN=14
BN=10
BM=14
Dx=1
Nx=101
X=xmin: dx: (xmin + (nx - 1) * dx)
KK=AN/AM * MN
Da=((x - 2 - AM). ^ 2 + h ^ 2). ^ (1/2)
The db=((x + 2 + BN). ^ 2 + h ^ 2). ^ (1/2)
Rm=((x - 2.) ^ 2 + h ^ 2). ^ (1/2)
Rn=((x + 2). ^ 2 + h ^ 2). ^ (1/2)
Cosa=(da) ^ 2 + rm) ^ 2 - AM ^ 2))/(da) * rm) * 2)
Cosb=(da) ^ 2 + rn) ^ 2 - AN ^ 2))/(da) * rn) * 2)
KK psA=p * (1 + 2 * * (u - 1)/(2 * u + 1) * r ^ 3 * (cosa)/(da) ^ 2 + rm) ^ 2) - cosb./(da) ^ 2 + rn) ^ 2))]
Cosc=(db) ^ 2 + rm) ^ 2 - BM ^ 2))/(db. * rm. * 2)
Cosd=(db) ^ 2 + rn) ^ 2 - BN ^ 2))/(db) * rn) * 2)
KK psB=p * (1 + 2 * * (u - 1)/(2 * u + 1) * r ^ 3 * (cosc)/(db) ^ 2 + rm) ^ 2) + cosd./(db) ^ 2 + rn) ^ 2))]
Figure
Xx=plot (x, psA)
Hold on
Yy=plot (x, psB)
Legend (" psA ", "psB")
The title (" joint plane surface low resistance sphere apparent resistivity section above the line ")
% symmetrical quadrupole
Figure
For x=0:1:10 0
AB=20:10:10 00
MN=4
AM=(AB - MN)/2
BN=(AB - MN)/2
The AN=AM + MN
BM=BN + MN
K=AM. * the AN/MN
Da=((x - 2 - AM). ^ 2 + h ^ 2). ^ (1/2)
The db=((x + 2 + BN). ^ 2 + h ^ 2). ^ (1/2)
Rm=((x - 2.) ^ 2 + h ^ 2) ^ (1/2)
Rn=((x + 2). ^ 2 + h ^ 2) ^ (1/2)
Cosa=(da) rm ^ ^ 2 + 2 - AM. ^ 2))/(2 * da. * rm)
Cosb=(da AN rn ^ ^ 2 + 2 - AN. ^ 2))/(2 * da. * rn)
PsA1=p * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (K. * cosa./(da) ^ 2 + rm) ^ 2) - k. * cosb/(da) ^ 2 + rn) ^ 2))]
Cosc=(db) ^ 2 + rm) ^ 2 - BM. ^ 2))/(db. * rm. * 2)
Cosd=(db) ^ 2 + rn) ^ 2 - BN. ^ 2))/(db) * rn) * 2)
PsB1=p * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (-k. * cosc./(db) ^ 2 + rm) ^ 2) + k. * cosd/(db) ^ 2 + rn) ^ 2))]
PsAB=(psA1 + psB1.)/2
The plot (log10 (AB/2), psAB)
Hold on
End
The title (" apparent resistivity sounding curves ")
Figure
X=- 50:1:50
Ab=10:4:10 0;
[AB, X]=meshgrid (AB, X)
MN=4
AM=(AB - MN)/2
BN=(AB - MN)/2
The AN=AM + MN
BM=BN + MN
K=AM. * the AN/MN
Da=((X - 2 - AM). ^ 2 + h ^ 2). ^ (1/2)
The db=((X + 2 + BN). ^ 2 + h ^ 2). ^ (1/2)
Rm=((X - 2.) ^ 2 + h ^ 2). ^ (1/2)
Rn=((X + 2). ^ 2 + h ^ 2). ^ (1/2)
Cosa=(da) ^ 2 + rm) ^ 2 - AM. ^ 2))/(2 * da. * rm)
Cosb=(da) ^ 2 + rn) ^ 2 - AN. ^ 2))/(2 * da. * rn)
PsA1=p * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (K. * cosa./(da) ^ 2 + rm) ^ 2) - k. * cosb/(da) ^ 2 + rn) ^ 2))]
Cosc=(db) ^ 2 + rm) ^ 2 - BM. ^ 2))/(db. * rm. * 2)
Cosd=(db) ^ 2 + rn) ^ 2 - BN. ^ 2))/(db) * rn) * 2)
PsB1=p * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (-k. * cosc./(db) ^ 2 + rm) ^ 2) + k. * cosd/(db) ^ 2 + rn) ^ 2))]
PsAB=(psA1 + psB1.)/2
Pcolor (X, log10 (AB)/2), psAB), shading interp
Set (gca, 'YDir', 'reverse');
Colorbar
Xlabel (' X (m)), ylabel (' AB/2 (m));
The title (" influence ")
% this is numerical simulation experiment
% joint plane surface
R=5
H=10
Dy=1
Ny=101
Ymin=50
-Dx=1
Nx=101
Xmin=50
-P1=10
The p2=8
MN=1
AM=10
The AN=14
BN=10
BM=14
Dx=1
Nx=101
N=0.3
U=p2/p1
Y=ymin: dy (ymin + (ny - 1) * dy)
X=xmin: dx: (xmin + (nx - 1) * dx)
[X, Y)=meshgrid (X, Y)
KK=AN/AM * MN
Da=((x - 0.5 AM). ^ 2 + h ^ 2). ^ (1/2)
The db=((x + 0.5 + BN). ^ 2 + h ^ 2). ^ (1/2)
The rm=((x 0.5). ^ 2 + h ^ 2). ^ (1/2)
Rn=(x + (0.5). ^ 2 + h ^ 2). ^ (1/2)
Cosa=(da) ^ 2 + rm) ^ 2 - AM ^ 2))/(da) * rm) * 2)
Cosb=(da) ^ 2 + rn) ^ 2 - AN ^ 2))/(da) * rn) * 2)
KK psA=p * (1 + 2 * * (u - 1)/(2 * u + 1) * r ^ 3 * (cosa)/(da) ^ 2 + rm) ^ 2) - cosb./(da) ^ 2 + rn) ^ 2))]
Cosc=(db) ^ 2 + rm) ^ 2 - BM ^ 2))/(db. * rm. * 2)
Cosd=(db) ^ 2 + rn) ^ 2 - BN ^ 2))/(db) * rn) * 2)
KK psB=p * (1 + 2 * * (u - 1)/(2 * u + 1) * r ^ 3 * (cosc)/(db) ^ 2 + rm) ^ 2) + cosd./(db) ^ 2 + rn) ^ 2))]
P3=p2/(1 - n)
U=p3/p1
KK psA2=p * (1 + 2 * * (u - 1)/(2 * u + 1) * r ^ 3 * (cosa)/(da) ^ 2 + rm) ^ 2) - cosb./(da) ^ 2 + rn) ^ 2))]
KK psB2=p * (1 + 2 * * (u - 1)/(2 * u + 1) * r ^ 3 * (cosc)/(db) ^ 2 + rm) ^ 2) + cosd./(db) ^ 2 + rn) ^ 2))]
The nsA=1 - psA./psA2
NsB=1 - psB./psB2
Figure
Plot (x, nsA)
Hold on
Plot (x, nsB)
The title (" low resistance sphere above even section polarization curve ")
Legend (" nsA ", "psB")
Xlabel (" X "), ylabel (" ns ")
Intermediate gradient device %
P1=10
The p2=8
U=p2/p1
Ps1=p1. * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (2 * h ^ 2 - x. ^ 2))/(h ^ 2 + x ^ 2). ^ 5/2]
P3=p2/(1 - n)
U=p3/p1
Ps2=p1. * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (2 * h ^ 2 - x. ^ 2))/(h ^ 2 + x ^ 2). ^ 5/2]
Ns=1 - ps1./ps2
Figure
Plot (x, ns)
The title (" intermediate gradient apparent chargeability main plane surface figure ")
Xlabel (" X "), ylabel (" ns ")
Hold on
Figure
For y=- 5:1:5
U=p2/p1
Ps1=p1. * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (2 * h ^ 2 - x. y ^ ^ 2 + 2))/(h ^ 2 + x ^ 2 + y ^ 2). ^ 5/2]
P3=p2/(1 - n)
U=p3/p1
Ps2=p1. * (1 + 2 * (u - 1)/(2 * u + 1) * r ^ 3 * (2 * h ^ 2 - x. y ^ ^ 2 + 2))/(h ^ 2 + x ^ 2 + y ^ 2). ^ 5/2]
Ns=1 - ps1./ps2
Plot (x, ns)
Hold on
End
grid on;
Title (' change with plane surface location)
Xlabel (" X "), ylabel (" ns ")
Figure
nullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnullnull
  • Related