I have a dataframe which looks something like this:
S.No date origin dest journeytype
1 2021-10-21 FKG HYM OP
2 2021-10-21 FKG HYM PK
3 2021-10-21 HYM LDS OP
4 2021-10-22 FKG HYM OP
5 2021-10-22 FKG HYM PK
6 2021-10-22 HYM LDS OP
7 2021-10-23 FKG HYM OP
8 2021-10-24 AVM BLA OP
9 2021-10-24 AVM DBL OP
10 2021-10-27 AVM BLA OP
I need to split the individual origin, destination & journeytype into individual start & end_date columns.
Output dataframe for the above input should look like:
start_date end_date origin dest journeytype
2021-10-21 2021-10-23 FKG HYM OP
2021-10-21 2021-10-22 FKG HYM PK
2021-10-21 2021-10-22 HYM LDS OP
2021-10-24 2021-10-24 AVM BLA OP
2021-10-24 2021-10-24 AVM DBL OP
2021-10-27 2021-10-27 AVM BLA OP
Also if the date for any group is non-continuous they need to be shown as seperate records in the result
CodePudding user response:
Convert column to datetimes if necessary, then aggregate min
and max
by GroupBy.agg
adn last change order of columns by list:
df['date'] = pd.to_datetime(df['date'])
df = (df.groupby(['origin','dest','journeytype'], sort=False)['date']
.agg(start_date='min', end_date='max')
.reset_index())
df = df[['start_date', 'end_date','origin', 'dest', 'journeytype']]
print (df)
start_date end_date origin dest journeytype
0 2021-10-21 2021-10-23 FKG HYM OP
1 2021-10-21 2021-10-22 FKG HYM PK
2 2021-10-21 2021-10-22 HYM LDS OP
3 2021-10-24 2021-10-24 AVM BLA OP
4 2021-10-24 2021-10-24 AVM DBL OP
5 2021-10-24 2021-10-24 AVM DKD OP