I have a vector containing "potential" column names:
col_vector <- c("A", "B", "C")
I also have a data frame, e.g.
library(tidyverse)
df <- tibble(A = 1:2,
B = 1:2)
My goal now is to create all columns mentioned in col_vector
that don't yet exist in df
.
For the above exmaple, my code below works:
df %>%
mutate(!!sym(setdiff(col_vector, colnames(.))) := NA)
# A tibble: 2 x 3
A B C
<int> <int> <lgl>
1 1 1 NA
2 2 2 NA
Problem is that this code fails as soon as a) more than one column from col_vector
is missing or b) no column from col_vector
is missing. I thought about some sort of if_else, but don't know how to make the column creation conditional in such a way - preferably in a tidyverse way. I know I can just create a loop going through all the missing columns, but I'm wondering if there is a more direc approach.
Example data where code above fails:
df2 <- tibble(A = 1:2)
df3 <- tibble(A = 1:2,
B = 1:2,
C = 1:2)
CodePudding user response:
This should work.
df[,setdiff(col_vector, colnames(df))] <- NA
CodePudding user response:
Solution
This base
solution might be simpler than a dplyr
workflow:
library(tidyverse)
# ...
# Code to generate 'df'.
# ...
# Find the subset of missing names, and create them as columns filled with 'NA'.
df[, setdiff(col_vector, names(df))] <- NA
# View results
df
Results
Given your sample col_vector
and df
here
col_vector <- c("A", "B", "C")
df <- tibble(A = 1:2, B = 1:2)
this solution should yield the following results:
# A tibble: 2 x 3
A B C
<int> <int> <lgl>
1 1 1 NA
2 2 2 NA
Advantages
An advantage of my solution, over the alternative linked above by @geoff, is that you need not code by hand the set of column names, as symbol
s and strings within the dplyr
workflow.
df %>% mutate(
#####################################
A = ifelse("A" %in% names(.), A, NA),
B = ifelse("B" %in% names(.), B, NA),
C = ifelse("C" %in% names(.), B, NA)
# ...
# etc.
#####################################
)
My solution is by contrast more dynamic
##############################
df[, setdiff(col_vector, names(df))] <- NA
##############################
if you ever decide to change (or even dynamically calculate!) your variable names midstream, since it determines the setdiff()
at runtime.
Note
Incredibly, @AustinGraves posted their answer at precisely the same time (2021-10-25 21:03:05Z
) as I posted mine, so both answers qualify as original solutions.