I am new here and quite new to programming, so any help would be greatly appreciated.
I have a dataframe df1 which looks like this:
Picture | Emotion | Gender | Type | Trial | Attr_scores | Fear_scores | Appr_scores | Avoid_scores |
---|---|---|---|---|---|---|---|---|
1 | happy | male | human | first | 11 | 3 | 21 | 21 |
2 | sad | male | human | first | 12 | 6 | 22 | 22 |
3 | neutral | male | human | first | 13 | 2 | 23 | 23 |
4 | happy | male | cartoon | first | 14 | 3 | 24 | 24 |
5 | sad | male | cartoon | first | 15 | 6 | 25 | 25 |
6 | neutral | male | cartoon | first | 16 | 2 | 26 | 26 |
7 | happy | male | animal | first | 17 | 3 | 27 | 27 |
8 | sad | male | animal | first | 18 | 6 | 28 | 28 |
9 | neutral | male | animal | first | 19 | 2 | 29 | 29 |
10 | happy | female | human | first | 20 | 3 | 21 | 30 |
11 | sad | female | human | first | 21 | 6 | 22 | 31 |
12 | neutral | female | human | first | 22 | 2 | 23 | 32 |
13 | happy | female | cartoon | first | 23 | 3 | 24 | 33 |
14 | sad | female | cartoon | first | 24 | 6 | 25 | 34 |
15 | neutral | female | cartoon | first | 25 | 2 | 26 | 35 |
16 | happy | female | animal | first | 26 | 3 | 27 | 36 |
17 | sad | female | animal | first | 27 | 6 | 28 | 37 |
18 | neutral | female | animal | first | 28 | 2 | 29 | 38 |
And here is the code to generate it:
Picture <- c(1:18)
Emotion <- rep(c('happy','sad','neutral'),times=6)
Gender <- rep(c('male','female'),each=9)
Type <- rep(c('human','cartoon','animal','human','cartoon','animal'),each=3)
Trial <- rep(c('first'),times=18)
Attr_scores <- c(11:28)
Fear_scores <- rep(c(3,6,2),times=6)
Appr_scores <- rep(c(21:29),times=2)
Avoid_scores <- c(21:38)
df1<-data.frame(Picture,Emotion,Gender,Type,Trial,Attr_scores,Fear_scores,Appr_scores,Avoid_scores)
I need to take several pairs of variables (one independent variable one dependent variable, e.g. Emotion Attr_scores, Emotion Fear_scores, Gender Attr_scores, Gender Avoid_scores), and for each of them: 1) run summary statistics (compare means and SDs), 2) run one-way ANOVA, 3) create a scatter plot.
So far, I have created the code for the first pair of variables (Gender Attr_scores). Here is the code:
# Summary Statistics
library(dplyr)
group_by(df1, Gender) %>%
summarise(
N = n(),
Mean = mean(Attr_scores, na.rm = TRUE),
Sd = sd(Attr_scores, na.rm = TRUE)
)
# ANOVA
res.aov <- aov(Attr_scores ~ Gender, data = df1)
summary(res.aov)
#Plot
gender_attr_plot <- ggplot(df1, aes(x=Gender, y=Attr_scores))
geom_jitter(position=position_jitter(0.2))
stat_summary(fun.data=mean_sdl, fun.args = list(mult = 1),
geom="pointrange", color="red")
ggsave("gender_attr_plot.png", gender_attr_plot, width = 1600, height = 900, units = "px")
I can copypaste the code for each additional pair of variables and change the variable names manually each time, but this seems like a very inefficient way of doing things. Moreover, if I need to run the same analyses for any additional pair of variables, I will have to copy the entire code again just to do that.
What I want to do instead, is create a table or nested list with pairs of variables (which can be easily updated later, if additional pairs of variables are required) and write a loop that goes through these pairs of variables and performs all 3 actions (summary statistics, ANOVA and plot) for each of them.
I think it should look something like this (this is very far from an actual working code, it's just to give a general idea):
variables <- list(
c(Gender, Attr_scores),
c(Gender, Fear_scores),
c(Type, Appr_scores),
c(Emotion, Avoid_scores))
for(i in variables){
library(dplyr)
group_by(df1, variables,'[[',1) %>%
summarise(
N = n(),
Mean = mean(variables,'[[',2, na.rm = TRUE),
Sd = sd(variables,'[[',2, na.rm = TRUE)
)
res.aov <- aov(variables,'[[',2 ~ variables,'[[',1, data = df1)
summary(res.aov)
plot <- ggplot(df1, aes(x=variables,'[[',1, y=variables,'[[',2))
geom_jitter(position=position_jitter(0.2))
stat_summary(fun.data=mean_sdl, fun.args = list(mult = 1),
geom="pointrange", color="red")
ggsave("??????.png", plot, width = 1600, height = 900, units = "px")
}
Obviously, this is not working, and I have been searching all over the internet for a solution, but my knowledge of R is not yet sufficient to figure out how to make it work. Any help would be most appreciated!
CodePudding user response:
Here is a possible solution for your task:
I modified your code a little and created one function my_function
with this function you get the desired output for one pair of your data set. The result is return in a list!
library(dplyr)
library(ggplot2)
my_function <- function(df, x, y) {
# Summary
a <- group_by(df, {{x}}) %>%
summarise(
N = n(),
Mean = mean({{y}}, na.rm = TRUE),
Sd = sd({{y}}, na.rm = TRUE)
)
# ANOVA
res.aov <- aov({{y}} ~ {{x}}, data = df)
b <- summary(res.aov)
# Plot
c <- ggplot(df1, aes(x={{x}}, y={{y}}))
geom_jitter(position=position_jitter(0.2))
stat_summary(fun.data=mean_sdl, fun.args = list(mult = 1),
geom="pointrange", color="red")
ggsave(paste0(deparse(substitute(x)), "_",
deparse(substitute(y)), ".png"), width = 1600, height = 900, units = "px")
output<-list(a,b,c)
return(output)
}
# cases 1 - 4
my_function(df1, Gender, Attr_scores)
my_function(df1, Gender, Avoid_scores)
my_function(df1, Emotion, Attr_scores)
my_function(df1, Emotion, Fear_scores)
CodePudding user response:
this may be useful
https://r4ds.had.co.nz/iteration.html#the-map-functions https://aosmith.rbind.io/2018/08/20/automating-exploratory-plots/
variables <-
structure(list(
x = c("Gender", "Gender", "Type", "Emotion"),
y = c("Attr_scores", "Fear_scores", "Appr_scores", "Avoid_scores")
),
class = "data.frame",
row.names = c(NA,-4L))
variables
#> x y
#> 1 Gender Attr_scores
#> 2 Gender Fear_scores
#> 3 Type Appr_scores
#> 4 Emotion Avoid_scores
library(tidyverse)
# GROUP
map2(
.x = variables$x,
.y = variables$y,
.f = ~ group_by(df,!!sym(.x)) %>%
summarise(
N = n(),
Mean = mean(!!sym(.y), na.rm = TRUE),
Sd = sd(!!sym(.y), na.rm = TRUE)
)) %>%
set_names(nm = str_c(variables$x, variables$y, sep = "#"))
#> $`Gender#Attr_scores`
#> # A tibble: 2 x 4
#> Gender N Mean Sd
#> <chr> <int> <dbl> <dbl>
#> 1 female 9 24 2.74
#> 2 male 9 15 2.74
#>
#> $`Gender#Fear_scores`
#> # A tibble: 2 x 4
#> Gender N Mean Sd
#> <chr> <int> <dbl> <dbl>
#> 1 female 9 3.67 1.80
#> 2 male 9 3.67 1.80
#>
#> $`Type#Appr_scores`
#> # A tibble: 3 x 4
#> Type N Mean Sd
#> <chr> <int> <dbl> <dbl>
#> 1 animal 6 28 0.894
#> 2 cartoon 6 25 0.894
#> 3 human 6 22 0.894
#>
#> $`Emotion#Avoid_scores`
#> # A tibble: 3 x 4
#> Emotion N Mean Sd
#> <chr> <int> <dbl> <dbl>
#> 1 happy 6 28.5 5.61
#> 2 neutral 6 30.5 5.61
#> 3 sad 6 29.5 5.61
# ANOVA
map2(
.x = variables$x,
.y = variables$y,
.f = ~ aov(as.formula(str_c(.y, .x, sep = "~")), data = df)
) %>%
set_names(nm = str_c(variables$x, variables$y, sep = "#"))
#> $`Gender#Attr_scores`
#> Call:
#> aov(formula = as.formula(str_c(.y, .x, sep = "~")), data = df)
#>
#> Terms:
#> Gender Residuals
#> Sum of Squares 364.5 120.0
#> Deg. of Freedom 1 16
#>
#> Residual standard error: 2.738613
#> Estimated effects may be unbalanced
#>
#> $`Gender#Fear_scores`
#> Call:
#> aov(formula = as.formula(str_c(.y, .x, sep = "~")), data = df)
#>
#> Terms:
#> Gender Residuals
#> Sum of Squares 0 52
#> Deg. of Freedom 1 16
#>
#> Residual standard error: 1.802776
#> Estimated effects may be unbalanced
#>
#> $`Type#Appr_scores`
#> Call:
#> aov(formula = as.formula(str_c(.y, .x, sep = "~")), data = df)
#>
#> Terms:
#> Type Residuals
#> Sum of Squares 108 12
#> Deg. of Freedom 2 15
#>
#> Residual standard error: 0.8944272
#> Estimated effects may be unbalanced
#>
#> $`Emotion#Avoid_scores`
#> Call:
#> aov(formula = as.formula(str_c(.y, .x, sep = "~")), data = df)
#>
#> Terms:
#> Emotion Residuals
#> Sum of Squares 12.0 472.5
#> Deg. of Freedom 2 15
#>
#> Residual standard error: 5.612486
#> Estimated effects may be unbalanced
#PLOT
f <- function(x, y) {
gender_attr_plot <- ggplot(df, aes(x = .data[[x]], y = .data[[y]]))
geom_jitter(position = position_jitter(0.2))
stat_summary(
fun.data = mean_sdl,
fun.args = list(mult = 1),
geom = "pointrange",
color = "red"
)
}
all_plots <- map2(.x = variables$x, .y = variables$y, .f = f)
plotnames <- str_c(variables$x, "#", variables$y, ".png")
walk2(
.x = plotnames,
.y = all_plots,
.f = ~ ggsave(
filename = .x,
plot = .y,
width = 1600,
height = 900,
units = "px"
)
)
Created on 2021-10-25 by the reprex package (v2.0.1)
data
Picture <- c(1:18)
Emotion <- rep(c('happy', 'sad', 'neutral'), times = 6)
Gender <- rep(c('male', 'female'), each = 9)
Type <-
rep(c('human', 'cartoon', 'animal', 'human', 'cartoon', 'animal'),
each = 3)
Trial <- rep(c('first'), times = 18)
Attr_scores <- c(11:28)
Fear_scores <- rep(c(3, 6, 2), times = 6)
Appr_scores <- rep(c(21:29), times = 2)
Avoid_scores <- c(21:38)
df <-
data.frame(
Picture,
Emotion,
Gender,
Type,
Trial,
Attr_scores,
Fear_scores,
Appr_scores,
Avoid_scores
)