I try to create a DataFrame
containing a rolling mean based on a window with length 5. But my data contains one NaN
value and therefore I only get NaN
values for column 3 with a NaN
values. How is it possible to ignore NaN
values when using .rolling(5).mean()
?
I have this sample data df1
:
Column1 Column2 Column3 Column4
0 1 5 -9.0 13
1 1 6 -10.0 15
2 3 7 -5.0 11
3 4 8 NaN 9
4 6 5 -2.0 8
5 2 8 0.0 10
6 3 8 -3.0 12
For convenience:
#create DataFrame with NaN
df1 = pd.DataFrame({
'Column1':[1, 1, 3, 4, 6, 2, 3],
'Column2':[5, 6, 7, 8, 5, 8, 8],
'Column3':[-9, -10, -5, 'NaN', -2, 0, -3],
'Column4':[13, 15, 11, 9, 8, 10, 12]
})
df1 = df1.replace('NaN',np.nan)
df1
When I use to create a rolling mean based on a window of 5, I get for column 3 only NaN
values.
df2 = df1.rolling(5).mean()
Column1 Column2 Column3 Column4
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 3.0 6.2 NaN 11.2
5 3.2 6.8 NaN 10.6
6 3.6 7.2 NaN 10.0
CodePudding user response:
Pandas mean has a skipna
flag to be told to ignore the NaNs see
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html
Try
df2 = df1.rolling(5).mean(skipna=True)
or
df2 = df1.rolling(5).apply(pd.np.nanmean)
CodePudding user response:
You should interpolate the NaN with either 0 or mean.
Below works.
df1 = df1.fillna(df1.mean())
df2 = df1.rolling(5).mean()