I am having a database of all customer transactions within company I work at.
ID | Payment | Amount | Month | Year |
---|---|---|---|---|
A | Inward | 100 | 2 | 2005 |
A | Outward | 200 | 2 | 2005 |
B | Inward | 100 | 7 | 2017 |
I have hardships combining Sum/Count of Amount of those transactions per Customer ID per Month/Year.
Only item that I succeed at is combining Sum/Count of Amount of those transactions per customer ID.
Combined = data.groupby("ID")["Amount"].sum().rename("Sum").reset_index()
Can you please let me know what are the alternative solutions?
Thank you in advance!
CodePudding user response:
You can use a list of columns in groupby
like:
>>> df.groupby(['ID', 'Year', 'Month', 'Payment'])['Amount'].agg(['sum', 'count'])
sum count
ID Year Month Payment
A 2005 2 Inward 100 1
Outward 200 1
B 2017 7 Inward 100 1
For further:
>>> df.assign(Amount=np.where(df['Payment'].eq('Outward'),
-df['Amount'], df['Amount'])) \
.groupby(['ID', 'Year', 'Month'])['Amount'].agg(['sum', 'count'])
sum count
ID Year Month
A 2005 2 -100 2
B 2017 7 100 1