I have a column in dataframe as list of objects(Array of structs) like
column: [{key1:value1}, {key2:value2}, {key3:value3}]
I want to split this column into separate columns with key name as column name and value as column value in same row.
Final result like
key1:value1, key2:value2, key3:value3
How to achieve this in pyspark ?
E.g.
Sample data to create dataframe:
my_new_schema = StructType([
StructField('id', LongType()),
StructField('countries', ArrayType(StructType([
StructField('name', StringType()),
StructField('capital', StringType())
])))
])
l = [(1, [
{'name': 'Italy', 'capital': 'Rome'},
{'name': 'Spain', 'capital': 'Madrid'}
])
]
dz = spark.createDataFrame(l, schema=my_new_schema)
# we have array of structs:
dz.show(truncate=False)
--- --------------------------------
|id |countries |
--- --------------------------------
|1 |[{Italy, Rome}, {Spain, Madrid}]|
--- --------------------------------
Expected output:
--- -------- ---------
|id |Italy | Spain |
--- ------------------
|1 |Rome | Madrid |
--- -------- ---------
CodePudding user response:
inline
the countries
array then pivot the country name
column:
import pyspark.sql.functions as F
dz1 = dz.selectExpr(
"id",
"inline(countries)"
).groupBy("id").pivot("name").agg(
F.first("capital")
)
dz1.show()
# --- ----- ------
#|id |Italy|Spain |
# --- ----- ------
#|1 |Rome |Madrid|
# --- ----- ------