Is there a simpler functional way to group columns into a MultiIndex?
# Setup
l = [...]
l2,l3,l4 = do_things(l, [2,3,4])
d = {2:l2, 3:l3, 4:l4}
# Or,
l = l2 = l3 = l4 = list(range(20))
Problems with my approaches:
# Cons:
# * Complicated
# * Requires multiple iterations over the dictionary to occur
# in the same order. This is guaranteed as the dictionary is
# unchanged but I'm not happy with the implicit dependency.
df = pd.DataFrame\
( zip(*d.values())
, index=l
, columns=pd.MultiIndex.from_product([["group"], d.keys()])
).rename_axis("x").reset_index().reset_index()
# Cons:
# * Complicated
# * Multiple assignments
df = pd.DataFrame(d, index=l).rename_axis("x")
df.columns = pd.MultiIndex.from_product([["group"],df.columns])
df = df.reset_index().reset_index()
I'm looking for something like:
df =\
( pd.DataFrame(d, index=l)
. rename_axis("x")
. group_columns("group")
. reset_index().reset_index()
)
Result:
index x group
2 3 4
0 0 2 0 0 0
1 1 2 0 0 0
2 2 2 0 0 0
3 3 2 0 0 0
4 4 1 0 0 0
5 5 2 0 0 0
6 6 1 0 0 0
7 7 2 0 0 0
8 8 4 0 1 1
9 9 4 0 1 1
10 10 4 0 1 1
11 11 0 0 1 1
12 12 1 0 1 1
13 13 1 0 1 1
14 14 3 1 2 2
15 15 1 1 2 2
16 16 1 1 2 3
17 17 1 1 2 3
18 18 4 1 2 3
19 19 3 1 2 3
20 20 4 1 2 3
21 21 4 1 2 3
22 22 4 1 2 3
23 23 4 1 2 3
CodePudding user response:
It is probably easiest just to reformat the dictionary and pass it to the DataFrame constructor:
# Sample Data
size = 5
lst = np.arange(size) 10
d = {2: lst, 3: lst size, 4: lst (size * 2)}
df = pd.DataFrame(
# Add group level by changing keys to tuples
{('group', k): v for k, v in d.items()},
index=lst
)
Output:
group
2 3 4
10 10 15 20
11 11 16 21
12 12 17 22
13 13 18 23
14 14 19 24
Notice that tuples get interpreted as a MultiIndex automatically
This can be followed with whatever chain of operations desired:
df = pd.DataFrame(
{('group', k): v for k, v in d.items()},
index=lst
).rename_axis('x').reset_index().reset_index()
df
:
index x group
2 3 4
0 0 10 10 15 20
1 1 11 11 16 21
2 2 12 12 17 22
3 3 13 13 18 23
4 4 14 14 19 24
It is also possible to combine steps and generate the complete DataFrame directly:
df = pd.DataFrame({
('index', ''): pd.RangeIndex(len(lst)),
('x', ''): lst,
**{('group', k): v for k, v in d.items()}
})
df
:
index x group
2 3 4
0 0 10 10 15 20
1 1 11 11 16 21
2 2 12 12 17 22
3 3 13 13 18 23
4 4 14 14 19 24
Naturally any combination of dictionary comprehension and pandas operations can be used.