I have a dataframe like as shown below
df = pd.DataFrame(
{'stud_id' : [101, 101, 101, 101,
101, 101, 101, 101],
'sub_code' : ['CSE01', 'CSE01', 'CSE01',
'CSE01', 'CSE02', 'CSE02',
'CSE02', 'CSE02'],
'ques_date' : ['13/11/2020', '10/1/2018','11/11/2017', '27/03/2016',
'13/05/2010', '10/11/2008','11/1/2007', '27/02/2006'],
'resp_date' : [np.nan, '11/1/2018','14/11/2017', '29/03/2016',
np.nan, np.nan,np.nan,'28/02/2006'],
'marks' : [77, 86, 55, 90,
65, 90, 80, 67]}
)
df['ques_date'] = pd.to_datetime(df['ques_date'])
df['resp_date'] = pd.to_datetime(df['resp_date'])
df['date_diff'] = (df['resp_date'] - df['ques_date']).dt.days
I would like to do the below
a) For every stud_id
and sub_code
combination, get the avg date_diff
.
b) For every stud_id
and sub_code
combination, get the avg number of NA
. NAs
indicate the lack of response. for ex: stud_id = 101
AND sub_code = CSE01
combination has `1 NA out of 4 records, resulting in 1/4 = 0.25.
I tried the below but not sure how to get the avg NA
in aggregate function
df.groupby(['stud_id','sub_code']).agg(stud_total_records = ('stud_id','count'),
avg_resp_time = ('date_diff','mean'),
lack_resp_pct = (df.groupby(['stud_id','sub_code'])['resp_date'].isna().sum()).reset_index(name='NA_cnt')['NA_cnt']/stud_total_records)
I expect my output to be like as shown below
CodePudding user response:
Update
Use lazy groups:
grp = df.groupby(['stud_id', 'sub_code'])
out = grp.agg(stud_total_records = ('stud_id', 'count'),
avg_resp_time = ('date_diff', 'mean'),
lack_resp_pct = ('date_diff', lambda x: sum(x.isna()) / df['date_diff'].count())) \
.reset_index()
print(out)
# Output
stud_id sub_code stud_total_records avg_resp_time lack_resp_pct
0 101 CSE01 4 12.0 0.25
1 101 CSE02 4 1.0 0.75
Old answer Try:
out = df.groupby(['stud_id','sub_code']).agg(stud_total_records = ('stud_id', 'count'),
avg_resp_time = ('date_diff', 'mean'))
out['lack_resp_pct'] = df[df['date_diff'].isna()].value_counts(['stud_id', 'sub_code'], normalize=True)
Output:
>>> out.reset_index()
stud_id sub_code stud_total_records avg_resp_time lack_resp_pct
0 101 CSE01 4 12.0 0.25
1 101 CSE02 4 1.0 0.75