I would like to generate a numpy array by performing a sum of indexed values from another array
For for example, given the following arrays:
row_indices = np.array([[1, 1, 1], [0, 1, 1]])
col_indices = np.array([[0, 0, 1], [1, 1, 1]])
values = np.array([[2, 2, 3], [2, 4, 4]])
I would like so set a new array indexed_sum
in the following way:
for i in range(row_indices.size):
indexed_sum[row_indices.flat[i], col_indices.flat[i]] = values.flat[i]
Such that:
indexed_sum = np.array([[0, 2], [4, 11]])
However, since this is a python loop and these arrays can be very large, this takes an unacceptable amount of time. Is there an efficient numpy method that I can use to accomplish this?
CodePudding user response:
Since the tradeoff between speed and memmory-ussage I think your method is well situable. But you can still make it faster:
- avoid flattening the arrays inside the loop this will save you some time
- instead of using
.flat[:]
or.flatten()
use.ravel()
(I'm not sure why but it seems to be faster) - also avoid
for i in range..
just zip in the values of interest (see method3)
Here a good solution that will speed-up things:
r_i_f = row_indices.ravel()
c_i_f = col_indices.ravel()
v_f = values.ravel()
indexed_sum = np.zeros((row_indices.max() 1,col_indices.max() 1))
for i,j,v in zip(r_i_f,c_i_f,v_f):
indexed_sum[i, j] = v
return indexed_sum
To see a comparision here's some toy code (correct any detail it's not proportioned and let me know if it works well for you)
def method1(values,row_indices,col_indices):
"""OP method"""
indexed_sum = np.zeros((row_indices.max() 1,col_indices.max() 1))
for i in range(row_indices.size):
indexed_sum[row_indices.flat[i], col_indices.flat[i]] = values.flat[i]
return indexed_sum
def method2(values,row_indices,col_indices):
"""just raveling before loop. Time saved here is considerable"""
r_i_f = row_indices.ravel()
c_i_f = col_indices.ravel()
v_f = values.ravel()
indexed_sum = np.zeros((row_indices.max() 1,col_indices.max() 1))
for i in range(row_indices.size):
indexed_sum[r_i_f[i], c_i_f[i]] = v_f[i]
return indexed_sum
def method3(values,row_indices,col_indices):
"""raveling, then avoiding range(...), just zipping
the time saved here is small but by no cost"""
r_i_f = row_indices.ravel()
c_i_f = col_indices.ravel()
v_f = values.ravel()
indexed_sum = np.zeros((row_indices.max() 1,col_indices.max() 1))
for i,j,v in zip(r_i_f,c_i_f,v_f):
indexed_sum[i, j] = v
return indexed_sum
from time import perf_counter
import numpy as np
out_size = 50
in_shape = (5000,5000)
values = np.random.randint(10,size=in_shape)
row_indices = np.random.randint(out_size,size=in_shape)
col_indices = np.random.randint(out_size,size=in_shape)
t1 = perf_counter()
v1 = method1(values,row_indices,col_indices)
t2 = perf_counter()
v2 = method2(values,row_indices,col_indices)
t3 = perf_counter()
v3 = method3(values,row_indices,col_indices)
t4 = perf_counter()
print(f"method1: {t2-t1}")
print(f"method2: {t3-t2}")
print(f"method3: {t4-t3}")
Outputs for values of shape 5000x5000 and output shaped as 50x50:
method1: 23.66934896100429
method2: 14.241692076990148
method3: 11.415708078013267
aditional a comparison between fltten methods (in my computer)
q = np.random.randn(5000,5000)
t1 = perf_counter()
q1 = q.flatten()
t2 = perf_counter()
q2 = q.ravel()
t3 = perf_counter()
q3 = q.reshape(-1)
t4 = perf_counter()
q4 = q.flat[:]
t5 = perf_counter()
#print times:
print(f"q.flatten: {t2-t1}")
print(f"q.ravel: {t3-t2}")
print(f"q.reshape(-1): {t4-t3}")
print(f"q.flat[:]: {t5-t4}")
Outputs:
q.flatten: 0.043878231997950934
q.ravel: 5.550700007006526e-05
q.reshape(-1): 0.0006349250033963472
q.flat[:]: 0.08832104799512308
CodePudding user response:
You might find success with numba
, another Python package. I timed the following two functions in a Jupyter notebook with %%timeit
. Results are below:
# Your loop, but in a function.
def run_sum(row_indicies, col_indicies, values):
indexed_sum = np.zeros((row_indicies.max() 1, col_indicies.max() 1))
for i in range(row_indicies.size):
indexed_sum[row_indicies.flat[i], col_indicies.flat[i]] = values.flat[i]
return indexed_sum
# Your loop with a numba decorator.
@numba.jit(nopython=True) # note you may be able to parallelize too
def run_sum_numba(row_indicies, col_indicies, values):
indexed_sum = np.zeros((row_indicies.max() 1, col_indicies.max() 1))
for i in range(row_indicies.size):
indexed_sum[row_indicies.flat[i], col_indicies.flat[i]] = values.flat[i]
return indexed_sum
My example data to have something bigger to chew on:
row_id_big = np.random.randint(0, 100, size=(1000,))
col_id_big = np.random.randint(0, 100, size=(1000,))
values_big = np.random.randint(0, 10, size=(1000,))
Results:
%timeit run_sum(row_id_big, col_id_big, values_big)
# 1.04 ms ± 12.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit run_sum_numba(row_id_big, col_id_big, values_big)
# 3.85 µs ± 44.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
The loop with the numba decorator is a couple hundred times faster in this example. I'm not positive about the memory usage compared to your example. I had to initialize a numpy array to have somewhere to put the data, but if you have a better way of doing that step you might be able to improve performance further.
A note with numba: you need to run your loop once to start seeing the major speed improvements. You might be able to initialize the jit with just a toy example like yours here and see the same speedup.
CodePudding user response:
There's a lot of options for this, but they're all reinventing a wheel that kinda already exists.
import numpy as np
from scipy import sparse
row_indices = np.array([[1, 1, 1], [0, 1, 1]])
col_indices = np.array([[0, 0, 1], [1, 1, 1]])
values = np.array([[2, 2, 3], [2, 4, 4]])
What you want is the built-in behavior for the scipy sparse matrices:
arr = sparse.coo_matrix((values.flat, (row_indices.flat, col_indices.flat)))
Which yields a sparse data structure:
>>> arr
<2x2 sparse matrix of type '<class 'numpy.int64'>'
with 6 stored elements in COOrdinate format>
But you can convert it back to a numpy array easily:
>>> arr.A
array([[ 0, 2],
[ 4, 11]])