1, data collection class
import OS;
The import torch. Utils. Data as the data;
The import numpy as np;
Import the torch;
The import torchvision. Transforms as transforms;
The from PIL import Image
Data_transform=transforms.Com pose ([
Transforms. ToTensor ()
]);
IMAGE_H=200;
IMAGE_W=200;
Class DogCatDataset (data. The Dataset) :
Def __init__ (self, mode, dir) :
The self. The mode=mode;
Self. List_img=[];
Self. List_label=[];
Self. Data_size=0;
The self. The transform=data_transform;
If the self. The mode=='train' :
Dir=dir + '/train/';
For file in OS. Listdir (dir) :
Self. List_img. Append (dir + file);
Self. Data_size +=1;
Name=file. The split (sep='. ');
If the name [0]=='cat' :
Self. List_label. Append (0);
The else:
Self. List_label. Append (1);
Elif self. Mode=='test' :
Dir=dir + '/test/';
For file in OS. Listdir (dir) :
Self. List_img. Append (dir + file);
Self. Data_size +=1;
Self. List_label. Append (2);
The else:
Return the print (' undefined dataset ');
Def __getitem__ (self, item) :
If the self. The mode=='train' :
Img=Image. Open (self. List_img [items]) # to open the picture
Img=img. Resize ((IMAGE_H IMAGE_W)) # resize the picture into a unified size
[img=np. Array (img) :, :, : 3] # data into numpy array form
Label=self. List_label/item # for image matching label
Return the self. The transform (img), torch LongTensor ([label])
Elif self. Mode=='test' :
Img=Image. Open (self. List_img [items]);
Img=img. Resize ((IMAGE_W IMAGE_H));
[img=np. Array (img) :,,,, 3].
Return the self. The transform (img);
The else:
Print (' None ');
Def __len__ (self) :
Return the self. Data_size;
Neural network structure:
import torch;
The import torch. Nn as nn;
The import torch. Utils. Data;
The import torch. Nn. The functional as F;
Class.net (nn Module) :
Def __init__ (self) :
The self, super (Net) __init__ ();
The self. The conv1=torch. Nn. Conv2d (3, 3, 16, padding=1)
Self. Conv2=torch. Nn. Conv2d (16, 16, 3, padding=1)
The self. The fc1=nn. Linear (50 * 50 * 16, 128)
The self. The fc2=nn. Linear (128, 64)
The self. The fc3=nn. Linear (64, 2)
Def forward (self, x) :
X=self. Conv1 (x)
X=F.r elu (x)
X=f. may ax_pool2d (x, 2)
X=self. Conv2 (x)
X=F.r elu (x)
X=f. may ax_pool2d (x, 2)
X=x.v iew (x.s considering () [0], 1)
X=F.r elu (self. (fc1) (x))
X=F.r elu (self fc2 (x))
X=self. Fc3 (x)
Return F.s oftmax (x, dim=1)
# x=F.r elu (self. Fc2 (x));
# x=F.r elu (self fc3 (x));
# x=F.r elu (self fc4 (x));
# x=self. Fc5 (x);
# return F.s oftmax (x, dim=1);
Training data set categories:
the from DogCatImageDataset import DogCatDataset as DVCD;
From the torch. Utils. Data import DataLoader as DataLoader;
The from TrainNet import Net;
Import the torch;
From the torch. Autograd import Variable;
The import torch. Nn as nn;
The import torchvision. Transforms as transforms;
The import matplotlib. Pyplot as PLT;
Dataset_dir='./data/';
Model_cp='./model/';
Workers=10;
Batch_size=50;
Lr=0.0001;
Epochs=10;
Def train () :
Transform_train=transforms.Com pose ([
Transforms the Normalize (STD=(0.5, 0.5, 0.5), mean=(0.5, 0.5, 0.5))
]);
Datafile=DVCD (' train 'dataset_dir);
Dataloader=dataloader (datafile, batch_size=batch_size, shuffle=True, num_workers=workers);
Print (' the Dataset of the loaded! The length of train set is {0} '. The format (len (datafile)));
The model=Net ();
Optimizer=torch. Optim. SGD (model. The parameters (), lr=lr, momentum=0.9).
Creiterion=torch. Nn. CrossEntropyLoss ();
CNT=0;
Losses=[];
For I in range (epochs) :
# model. The train ();
Print (' epochs: {0} '. The format (I));
For j, (img, label) in enumerate (dataloader) :
Img, label=Variable (img), Variable (label);
Optimizer. Zero_grad ();
Out=model (img);
Loss=creiterion (out, label. Squeeze ());
Loss. Backward ();
Optimizer. Step ();
# train_loss=loss/batch_size;
If j %==0:
Losses. Append (loss. The float ());
Print (' [epochs - {0} {1}/{2}] loss: {3} '. The format (I, j, len (datafile), loss. The float ()));
PLT. CLF ();
PLT. The plot (losses);
PLT. Pause (0.01);
# CNT +=1;
Frame # print (' {0}, train_loss: {1} '. The format (* batch_size CNT, loss/batch_size));
The torch. The save (model. State_dict (), '{0} model. The PTH'. The format (model_cp));
If __name__=="__main__ ':
Train ();
Loss curve:
Loss of log:
The great god, consult
CodePudding user response:
Feel the need to adjust the vector, and it didn't start, you wait and see more...Or SGD with rough Adam, please have a look at the effect of
Another: the convolution can be stack of layers, two layers of a little bit too less
CodePudding user response:
nullnullnullnullnullnullnullnullnullnull