I'm trying to create some artistic "plots" like the ones below:
The color of the regions do not really matter, what I'm trying to achieve is the variable "thickness" of the edges along the Voronoi regions (espescially, how they look like a bigger rounded blob where they meet in corners, and thinner at their middle point).
I've tried by "painting manually" each pixel based on the minimum distance to each centroid (each associated with a color):
n_centroids = 10
centroids = [(random.randint(0, h), random.randint(0, w)) for _ in range(n_centroids)]
colors = np.array([np.random.choice(range(256), size=3) for _ in range(n_centroids)]) / 255
for x, y in it.product(range(h), range(w)):
distances = np.sqrt([(x - c[0])**2 (y - c[1])**2 for c in centroids])
centroid_i = np.argmin(distances)
img[x, y] = colors[centroid_i]
plt.imshow(img, cmap='gray')
Or by scipy.spatial.Voronoi
, that also gives me the vertices points, although I still can't see how I can draw a line through them with the desired variable thickness.
from scipy.spatial import Voronoi, voronoi_plot_2d
# make up data points
points = [(random.randint(0, 10), random.randint(0, 10)) for _ in range(10)]
# add 4 distant dummy points
points = np.append(points, [[999,999], [-999,999], [999,-999], [-999,-999]], axis = 0)
# compute Voronoi tesselation
vor = Voronoi(points)
# plot
voronoi_plot_2d(vor)
# colorize
for region in vor.regions:
if not -1 in region:
polygon = [vor.vertices[i] for i in region]
plt.fill(*zip(*polygon))
# fix the range of axes
plt.xlim([-2,12]), plt.ylim([-2,12])
plt.show()
Edit:
I've managed to get a somewhat satisfying result via erosion corner smoothing (via median filter as suggested in the comments) on each individual region, then drawing it into a black background.
res = np.zeros((h,w,3))
for color in colors:
region = (img == color)[:,:,0]
region = region.astype(np.uint8) * 255
region = sg.medfilt2d(region, 15) # smooth corners
# make edges from eroding regions
region = cv2.erode(region, np.ones((3, 3), np.uint8))
region = region.astype(bool)
res[region] = color
plt.imshow(res)
But as you can see the "stretched" line along the boundaries/edges of the regions is not quite there. Any other suggestions?
CodePudding user response:
Could something like bezier polygon "approximations" help me with this?
An attempt using Bezier curves:
#!/usr/bin/env python
# coding: utf-8
"""
https://stackoverflow.com/questions/72061965/create-voronoi-art-with-rounded-region-edges
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Voronoi, voronoi_plot_2d
from bezier.curve import Curve # https://bezier.readthedocs.io/en/stable/python/index.html
def get_bezier(polygon, n=10):
closed_polygon = np.concatenate([polygon, [polygon[0]]])
# Insert additional points lying along the edges of the polygon;
# this allows us to use higher order bezier curves.
augmented_polygon = np.array(augment(closed_polygon, n))
# The bezier package does not seem to support closed bezier curves;
# to simulate a closed bezier curve, we triplicate the polygon,
# and only evaluate the curve on the inner third.
triplicated_polygon = np.vstack([augmented_polygon, augmented_polygon, augmented_polygon])
bezier_curve = Curve(triplicated_polygon.T, degree=len(triplicated_polygon)-1)
return bezier_curve.evaluate_multi(np.linspace(1./3, 2./3, 100)).T
def augment(polygon, n=10):
new_points = []
for ii, (x0, y0) in enumerate(polygon[:-1]):
x1, y1 = polygon[ii 1]
x = np.linspace(x0, x1, n)
y = np.linspace(y0, y1, n)
new_points.extend(list(zip(x[:-1], y[:-1])))
new_points.append((x1, y1))
return new_points
if __name__ == '__main__':
# make up data points
points = np.random.randint(0, 11, size=(50, 2))
# add 4 distant dummy points
points = np.append(points, [[999,999], [-999,999], [999,-999], [-999,-999]], axis = 0)
# compute Voronoi tesselation
vor = Voronoi(points)
# voronoi_plot_2d(vor)
fig, ax = plt.subplots()
for region in vor.regions:
if region and (not -1 in region):
polygon = np.array([vor.vertices[i] for i in region])
bezier_curve_points = get_bezier(polygon, 40)
ax.fill(*zip(*bezier_curve_points))
ax.axis([1, 9, 1, 9])
ax.axis('off')
plt.show()
CodePudding user response:
This is what @JohanC suggestion looks like. IMO, it looks much better than my attempt with Bezier curves. However, there appears to be a small problem with the RoundedPolygon
class, as there are sometimes small defects at the corners (e.g. between blue and purple in the image below).
Edit: I fixed the RoundedPolygon class.
#!/usr/bin/env python
# coding: utf-8
"""
https://stackoverflow.com/questions/72061965/create-voronoi-art-with-rounded-region-edges
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches, path
from scipy.spatial import Voronoi, voronoi_plot_2d
def shrink(polygon, pad):
center = np.mean(polygon, axis=0)
resized = np.zeros_like(polygon)
for ii, point in enumerate(polygon):
vector = point - center
unit_vector = vector / np.linalg.norm(vector)
resized[ii] = point - pad * unit_vector
return resized
class RoundedPolygon(patches.PathPatch):
# https://stackoverflow.com/a/66279687/2912349
def __init__(self, xy, pad, **kwargs):
p = path.Path(*self.__round(xy=xy, pad=pad))
super().__init__(path=p, **kwargs)
def __round(self, xy, pad):
n = len(xy)
for i in range(0, n):
x0, x1, x2 = np.atleast_1d(xy[i - 1], xy[i], xy[(i 1) % n])
d01, d12 = x1 - x0, x2 - x1
l01, l12 = np.linalg.norm(d01), np.linalg.norm(d12)
u01, u12 = d01 / l01, d12 / l12
x00 = x0 min(pad, 0.5 * l01) * u01
x01 = x1 - min(pad, 0.5 * l01) * u01
x10 = x1 min(pad, 0.5 * l12) * u12
x11 = x2 - min(pad, 0.5 * l12) * u12
if i == 0:
verts = [x00, x01, x1, x10]
else:
verts = [x01, x1, x10]
codes = [path.Path.MOVETO] n*[path.Path.LINETO, path.Path.CURVE3, path.Path.CURVE3]
verts[0] = verts[-1]
return np.atleast_1d(verts, codes)
if __name__ == '__main__':
# make up data points
n = 100
max_x = 20
max_y = 10
points = np.c_[np.random.uniform(0, max_x, size=n),
np.random.uniform(0, max_y, size=n)]
# add 4 distant dummy points
points = np.append(points, [[2 * max_x, 2 * max_y],
[ -max_x, 2 * max_y],
[2 * max_x, -max_y],
[ -max_x, -max_y]], axis = 0)
# compute Voronoi tesselation
vor = Voronoi(points)
fig, ax = plt.subplots(figsize=(max_x, max_y))
for region in vor.regions:
if region and (not -1 in region):
polygon = np.array([vor.vertices[i] for i in region])
resized = shrink(polygon, 0.15)
ax.add_patch(RoundedPolygon(resized, 0.2, color=plt.cm.Reds(0.5 0.5*np.random.rand())))
ax.axis([0, max_x, 0, max_y])
ax.axis('off')
ax.set_facecolor('black')
ax.add_artist(ax.patch)
ax.patch.set_zorder(-1)
plt.show()