Home > other >  Iterating over JSON data and printing. (or creating Pandas DataFrame from JSON file)
Iterating over JSON data and printing. (or creating Pandas DataFrame from JSON file)

Time:05-28

I’m trying to use Python print specific values from a JSON file that I pulled from an API. From what I understand, I am pulling it as a JSON file that has a list of dictionaries of players, with a nested dictionary for each player containing their data (i.e. name, team, etc.).

I’m running into issues printing the values within the JSON file, as each character is printing on a separate line.

The end result I am trying to get to is a Pandas DataFrame containing all the values from the JSON file, but I can’t even seem to iterate through the JSON file correctly.

Here is my code:

url = "https://api-football-v1.p.rapidapi.com/v3/players"

querystring = {"league":"39","season":"2020", "page":"2"}

headers = {
        "X-RapidAPI-Host": "api-football-v1.p.rapidapi.com",
        "X-RapidAPI-Key": "xxxxxkeyxxxxx"
}

response = requests.request("GET", url, headers=headers, params=querystring).json()

response_dump = json.dumps(response)

for item in response_dump:
    for player_item in item:
        print(player_item)

This is the output when I print the JSON response (first two items):

{'get': 'players', 'parameters': {'league': '39', 'page': '2', 'season': '2020'}, 'errors': [], 'results': 20, 'paging': {'current': 2, 'total': 37}, 'response': [{'player': {'id': 301, 'name': 'Benjamin Luke Woodburn', 'firstname': 'Benjamin Luke', 'lastname': 'Woodburn', 'age': 23, 'birth': {'date': '1999-10-15', 'place': 'Nottingham', 'country': 'England'}, 'nationality': 'Wales', 'height': '174 cm', 'weight': '72 kg', 'injured': False, 'photo': 'https://media.api-sports.io/football/players/301.png'}, 'statistics': [{'team': {'id': 40, 'name': 'Liverpool', 'logo': 'https://media.api-sports.io/football/teams/40.png'}, 'league': {'id': 39, 'name': 'Premier League', 'country': 'England', 'logo': 'https://media.api-sports.io/football/leagues/39.png', 'flag': 'https://media.api-sports.io/flags/gb.svg', 'season': 2020}, 'games': {'appearences': 0, 'lineups': 0, 'minutes': 0, 'number': None, 'position': 'Attacker', 'rating': None, 'captain': False}, 'substitutes': {'in': 0, 'out': 0, 'bench': 3}, 'shots': {'total': None, 'on': None}, 'goals': {'total': 0, 'conceded': 0, 'assists': None, 'saves': None}, 'passes': {'total': None, 'key': None, 'accuracy': None}, 'tackles': {'total': None, 'blocks': None, 'interceptions': None}, 'duels': {'total': None, 'won': None}, 'dribbles': {'attempts': None, 'success': None, 'past': None}, 'fouls': {'drawn': None, 'committed': None}, 'cards': {'yellow': 0, 'yellowred': 0, 'red': 0}, 'penalty': {'won': None, 'commited': None, 'scored': 0, 'missed': 0, 'saved': None}}]}, {'player': {'id': 518, 'name': 'Meritan Shabani', 'firstname': 'Meritan', 'lastname': 'Shabani', 'age': 23, 'birth': {'date': '1999-03-15', 'place': 'München', 'country': 'Germany'}, 'nationality': 'Germany', 'height': '185 cm', 'weight': '78 kg', 'injured': False, 'photo': 'https://media.api-sports.io/football/players/518.png'}, 'statistics': [{'team': {'id': 39, 'name': 'Wolves', 'logo': 'https://media.api-sports.io/football/teams/39.png'}, 'league': {'id': 39, 'name': 'Premier League', 'country': 'England', 'logo': 'https://media.api-sports.io/football/leagues/39.png', 'flag': 'https://media.api-sports.io/flags/gb.svg', 'season': 2020}, 'games': {'appearences': 0, 'lineups': 0, 'minutes': 0, 'number': None, 'position': 'Midfielder', 'rating': None, 'captain': False}, 'substitutes': {'in': 0, 'out': 0, 'bench': 3}, 'shots': {'total': None, 'on': None}, 'goals': {'total': 0, 'conceded': 0, 'assists': None, 'saves': None}, 'passes': {'total': None, 'key': None, 'accuracy': None}, 'tackles': {'total': None, 'blocks': None, 'interceptions': None}, 'duels': {'total': None, 'won': None}, 'dribbles': {'attempts': None, 'success': None, 'past': None}, 'fouls': {'drawn': None, 'committed': None}, 'cards': {'yellow': 0, 'yellowred': 0, 'red': 0}, 'penalty': {'won': None, 'commited': None, 'scored': 0, 'missed': 0, 'saved': None}}]},

This is the data type of each layer of the JSON file, from when I iterated through it with a For loop:

print(type(response)) <class 'dict'>

print(type(response_dump)) <class 'str'>

print(type(item)) <class 'str'>

print(type(player_item)) <class 'str'>

CodePudding user response:

You do not have to json.dumps() in my opinion, just use the JSON from response to iterate:

for player in response['response']:
    print(player)

{'player': {'id': 301, 'name': 'Benjamin Luke Woodburn', 'firstname': 'Benjamin Luke', 'lastname': 'Woodburn', 'age': 23, 'birth': {'date': '1999-10-15', 'place': 'Nottingham', 'country': 'England'}, 'nationality': 'Wales', 'height': '174 cm', 'weight': '72 kg', 'injured': False, 'photo': 'https://media.api-sports.io/football/players/301.png'}, 'statistics': [{'team': {'id': 40, 'name': 'Liverpool', 'logo': 'https://media.api-sports.io/football/teams/40.png'}, 'league': {'id': 39, 'name': 'Premier League', 'country': 'England', 'logo': 'https://media.api-sports.io/football/leagues/39.png', 'flag': 'https://media.api-sports.io/flags/gb.svg', 'season': 2020}, 'games': {'appearences': 0, 'lineups': 0, 'minutes': 0, 'number': None, 'position': 'Attacker', 'rating': None, 'captain': False}, 'substitutes': {'in': 0, 'out': 0, 'bench': 3}, 'shots': {'total': None, 'on': None}, 'goals': {'total': 0, 'conceded': 0, 'assists': None, 'saves': None}, 'passes': {'total': None, 'key': None, 'accuracy': None}, 'tackles': {'total': None, 'blocks': None, 'interceptions': None}, 'duels': {'total': None, 'won': None}, 'dribbles': {'attempts': None, 'success': None, 'past': None}, 'fouls': {'drawn': None, 'committed': None}, 'cards': {'yellow': 0, 'yellowred': 0, 'red': 0}, 'penalty': {'won': None, 'commited': None, 'scored': 0, 'missed': 0, 'saved': None}}]}
{'player': {'id': 518, 'name': 'Meritan Shabani', 'firstname': 'Meritan', 'lastname': 'Shabani', 'age': 23, 'birth': {'date': '1999-03-15', 'place': 'München', 'country': 'Germany'}, 'nationality': 'Germany', 'height': '185 cm', 'weight': '78 kg', 'injured': False, 'photo': 'https://media.api-sports.io/football/players/518.png'}, 'statistics': [{'team': {'id': 39, 'name': 'Wolves', 'logo': 'https://media.api-sports.io/football/teams/39.png'}, 'league': {'id': 39, 'name': 'Premier League', 'country': 'England', 'logo': 'https://media.api-sports.io/football/leagues/39.png', 'flag': 'https://media.api-sports.io/flags/gb.svg', 'season': 2020}, 'games': {'appearences': 0, 'lineups': 0, 'minutes': 0, 'number': None, 'position': 'Midfielder', 'rating': None, 'captain': False}, 'substitutes': {'in': 0, 'out': 0, 'bench': 3}, 'shots': {'total': None, 'on': None}, 'goals': {'total': 0, 'conceded': 0, 'assists': None, 'saves': None}, 'passes': {'total': None, 'key': None, 'accuracy': None}, 'tackles': {'total': None, 'blocks': None, 'interceptions': None}, 'duels': {'total': None, 'won': None}, 'dribbles': {'attempts': None, 'success': None, 'past': None}, 'fouls': {'drawn': None, 'committed': None}, 'cards': {'yellow': 0, 'yellowred': 0, 'red': 0}, 'penalty': {'won': None, 'commited': None, 'scored': 0, 'missed': 0, 'saved': None}}]}

or

for player in response['response']:
    print(player['player'])

{'id': 301, 'name': 'Benjamin Luke Woodburn', 'firstname': 'Benjamin Luke', 'lastname': 'Woodburn', 'age': 23, 'birth': {'date': '1999-10-15', 'place': 'Nottingham', 'country': 'England'}, 'nationality': 'Wales', 'height': '174 cm', 'weight': '72 kg', 'injured': False, 'photo': 'https://media.api-sports.io/football/players/301.png'}
{'id': 518, 'name': 'Meritan Shabani', 'firstname': 'Meritan', 'lastname': 'Shabani', 'age': 23, 'birth': {'date': '1999-03-15', 'place': 'München', 'country': 'Germany'}, 'nationality': 'Germany', 'height': '185 cm', 'weight': '78 kg', 'injured': False, 'photo': 'https://media.api-sports.io/football/players/518.png'}

To get a DataFrame simply call pd.json_normalize() - Cause your question is not that clear I am not sure wiche information is needed and how to displayed. This is predestinated to ask a new question with exact that focus.:

pd.json_normalize(response['response'])

EDIT

Based on your comment and improvment:

pd.concat([pd.json_normalize(response,['response'])\
          ,pd.json_normalize(response,['response','statistics'])], axis=1)\
  .drop(['statistics'], axis=1)
player.id player.name player.firstname player.lastname player.age player.birth.date player.birth.place player.birth.country player.nationality player.height player.weight player.injured player.photo team.id team.name team.logo league.id league.name league.country league.logo league.flag league.season games.appearences games.lineups games.minutes games.number games.position games.rating games.captain substitutes.in substitutes.out substitutes.bench shots.total shots.on goals.total goals.conceded goals.assists goals.saves passes.total passes.key passes.accuracy tackles.total tackles.blocks tackles.interceptions duels.total duels.won dribbles.attempts dribbles.success dribbles.past fouls.drawn fouls.committed cards.yellow cards.yellowred cards.red penalty.won penalty.commited penalty.scored penalty.missed penalty.saved
0 301 Benjamin Luke Woodburn Benjamin Luke Woodburn 23 1999-10-15 Nottingham England Wales 174 cm 72 kg False https://media.api-sports.io/football/players/301.png 40 Liverpool https://media.api-sports.io/football/teams/40.png 39 Premier League England https://media.api-sports.io/football/leagues/39.png https://media.api-sports.io/flags/gb.svg 2020 0 0 0 Attacker False 0 0 3 0 0 0 0 0 0 0
1 518 Meritan Shabani Meritan Shabani 23 1999-03-15 München Germany Germany 185 cm 78 kg False https://media.api-sports.io/football/players/518.png 39 Wolves https://media.api-sports.io/football/teams/39.png 39 Premier League England https://media.api-sports.io/football/leagues/39.png https://media.api-sports.io/flags/gb.svg 2020 0 0 0 Midfielder False 0 0 3 0 0 0 0 0 0 0
  • Related