We start with an interval axis that is divided into bins of length 5. (0,5], (5, 10], ... There is a timestamp column that has some timestamps >= 0. By using pd.cut() the interval bin that corresponds to the timestamp is determined. (e.g. "timestamp" = 3.0 -> "time_bin" = (0,5]).
If there is a time bin that has no corresponding timestamp, it does not show up in the interval column. Thus, there can be interval gaps in the "time_bin" column, e.g., (5,10], (15,20]. (i.e., interval (10,15] is missing // note that the timestamp column is sorted)
The goal is to obtain a column "connected_interval" that indicates whether the current row interval is connected to the previous row interval; connected meaning no interval gaps, i.e., (0,5], (5,10], (10, 15] would be assigned the same integer ID) and a column "conn_interv_length" that indicates for each largest possible connected interval the length of the interval. The interval (0,5], (5,10], (10, 15] would be of length 15.
The initial dataframe has columns "group_id", "timestamp", "time_bin". Columns "connected_interval" & "conn_interv_len" should be computed.
Note: any solution to obtaining the length of populated connected intervals is welcome.
df = pd.DataFrame({"group_id":['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'],\
"timestamp": [0.0, 3.0, 9.0, 24.2, 30.2, 0.0, 136.51, 222.0, 237.0, 252.0],\
"time_bin": [pd.Interval(0, 5, closed='left'), pd.Interval(0, 5, closed='left'), pd.Interval(5, 10, closed='left'), pd.Interval(20, 25, closed='left'), pd.Interval(30, 35, closed='left'), pd.Interval(0, 5, closed='left'), pd.Interval(135, 140, closed='left'), pd.Interval(220, 225, closed='left'), pd.Interval(235, 240, closed='left'), pd.Interval(250, 255, closed='left')],\
"connected_interval":[0, 0, 0, 1, 2, 0, 1, 2, 3, 4],\
"conn_interv_len":[10, 10, 10, 5, 5, 5, 5, 5, 5, 5],\
})
input with expected output columns:
group_id timestamp time_bin connected_interval conn_interv_len
0 A 0.00 [0, 5) 0 10
1 A 3.00 [0, 5) 0 10
2 A 9.00 [5, 10) 0 10
3 A 24.20 [20, 25) 1 5
4 A 30.20 [30, 35) 2 5
5 B 0.00 [0, 5) 0 5
6 B 136.51 [135, 140) 1 5
7 B 222.00 [220, 225) 2 5
8 B 237.00 [235, 240) 3 5
9 B 252.00 [250, 255) 4 5
CodePudding user response:
IIUC, you can sort the intervals, drop duplicates, extract the left/right bound, create groups based on the match/mismatch of the successive left/right, then merge again the output to the original:
df2 = (df[['group_id', 'time_bin']]
# extract bounds and sort intervals
.assign(left=df['time_bin'].array.left,
right=df['time_bin'].array.right)
.sort_values(by=['group_id', 'left', 'right'])
# ensure no duplicates
.drop_duplicates(['group_id', 'time_bin'])
# compute connected intervals and connected length
.assign(connected_interval=lambda d:
d.groupby('group_id', group_keys=False)
.apply(lambda g: g['left'].ne(g['right'].shift())
.cumsum().sub(1)),
conn_interv_len=lambda d:
(g := d.groupby(['group_id', 'connected_interval']))['right'].transform('max')
-g['left'].transform('min')
)
.drop(columns=['left', 'right'])
)
# merge to restore missing dropped duplicated rows
out = df.merge(df2)
output:
group_id timestamp time_bin connected_interval conn_interv_len
0 A 0.00 [0, 5) 0 10
1 A 3.00 [0, 5) 0 10
2 A 9.00 [5, 10) 0 10
3 A 24.20 [20, 25) 1 5
4 A 30.20 [30, 35) 2 5
5 B 0.00 [0, 5) 0 5
6 B 136.51 [135, 140) 1 5
7 B 222.00 [220, 225) 2 5
8 B 237.00 [235, 240) 3 5
9 B 252.00 [250, 255) 4 5