visualizing a neural network result and this is what shows up:
def apply_net(y_in):
global w, b
z=dot(w, y_in) b
return(1/(1 exp(-z)))
N0=2
N1=1
w=random.uniform(low=-10,high= 10,size=(N1,N0)) # random weights: N1xN0
b=random.uniform(low=-1,high= 1,size=N1) #biases: N1 vector
TypeError Traceback (most recent call last) in () 2 N1=1 3 ----> 4 w=random.uniform(low=-10,high= 10,size=(N1,N0)) # random weights: N1xN0 5 b=random.uniform(low=-1,high= 1,size=N1) #biases: N1 vector
TypeError: uniform() got an unexpected keyword argument 'low'
___ If I remove low and high and keep it (-10, 10, size=(N1,N0)), it says: TypeError: uniform() got an unexpected keyword argument 'size'
If I remove size then it says: TypeError: uniform() takes 3 positional arguments but 4 were given
?
CodePudding user response:
must use random.uniform while importing the related class with an alias (using 'as') or else just use import numpy while importing
An example for using alias is :
from numpy import random as np_random
Then utilize np_random.uniform()
(figured it out and had to use this to solve the problem - note I ran it on colab)
CodePudding user response:
You must declare the alias library or the library name directly
import numpy as np
def apply_net(y_in):
global w, b
z=np.dot(w, y_in) b
return(1/(1 np.exp(-z)))
N0=2
N1=1
w=np.random.uniform(low=-10,high= 10,size=(N1,N0)) # random weights: N1xN0
b=np.random.uniform(low=-1,high= 1,size=N1) #biases: N1 vector