I have a function f(a)
that takes one entry from a testarray
and returns an array with 5 values:
f(testarray[0])
#Output: array([[0, 1, 5, 3, 2]])
Since f(testarray[0])
is the result of an experiment, I want to run this function f for each entry of the testarray
and store each result in a new numpy array. I always thought this would be quite simple by just taking an empty numpy array with the length of the testarray
and save the results the following way:
N = 1000 #Number of entries of the testarray
test_result = np.zeros([N, 5], dtype=int)
for i in testarray:
test_result[i] = f(i)
When I run this, I dont receive any error message but nonsense results (half of the test_result
is empty while the rest is filled with unplausible values). Since f()
works perfectly for a single entry of the testarray
I suppose that something of the way of how I save the results in the test_result
is wrong. What am I missing here?
(I know that I could save the results as list and then append an empty list, but this method is too slow for the large number of times I want to run the function).
CodePudding user response:
Since you don't seem to understand indexing, stick with this approach
alist = [f(i) for i in testarray]
arr = np.array(alist)
I could show how to use row indices and testarray values together, but that requires more explanation.
CodePudding user response:
Your problem may could be reproduced by the following small example:
testarray = np.array([5, 6, 7, 3, 1])
def f(x):
return np.array([x * i for i in np.arange(1, 6)])
f(testarray[0])
# [ 5 10 15 20 25]
test_result = np.zeros([len(testarray), 5], dtype=int) # len(testarray) or testarray.shape[0]
So, as hpaulj mentioned in the comments, you must be careful how to use indexing:
for i in range(len(testarray)):
test_result[i] = f(testarray[i])
# [[ 5 10 15 20 25]
# [ 6 12 18 24 30]
# [ 7 14 21 28 35]
# [ 3 6 9 12 15]
# [ 1 2 3 4 5]]
There will be another condition where the testarray
is a specified index array that contains shuffle integers from 0
to N
to full fill the zero array i.e. test_result
. For this condition we can create a reproducible example as:
testarray = np.array([4, 3, 0, 1, 2])
def f(x):
return np.array([x * i for i in np.arange(1, 6)])
f(testarray[0])
# [ 4 8 12 16 20]
test_result = np.zeros([len(testarray), 5], dtype=int)
So, using your loop will get the following result:
for i in testarray:
test_result[i] = f(i)
# [[ 0 0 0 0 0]
# [ 1 2 3 4 5]
# [ 2 4 6 8 10]
# [ 3 6 9 12 15]
# [ 4 8 12 16 20]]
As it can be understand from this loop, if the index array be not from 0
to N
, some rows in the zero array will left zero (unchanged):
testarray = np.array([4, 2, 4, 1, 2])
for i in testarray:
test_result[i] = f(i)
# [[ 0 0 0 0 0]
# [ 1 2 3 4 5]
# [ 2 4 6 8 10]
# [ 0 0 0 0 0] # <--
# [ 4 8 12 16 20]]