Using Pandas, I've been working on Kaggle's titanic problem, and have tried different variants of the groupby/ apply to try to fill out the NaN entries of the training data, train['Age'] Column.
import pandas as pd
import numpy as np
train = pd.DataFrame({'ID': [887, 888, 889, 890], 'Age': [19.0, np.nan, 26.0, 32.0]})
ID Age
0 887 19.0
1 888 NaN
2 889 26.0
3 890 32.0
how would I go through the elements and change these NaN elements to something like the median age?
I've tried variations of
train.Age = train.Age.apply(lambda x: x.fillna(x.median()))
- Which results in
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Input In [249], in <cell line: 1>()
----> 1 train.Age = train.Age.apply(lambda x: x.fillna(x.median()))
File ~\anaconda3\envs\py10\lib\site-packages\pandas\core\series.py:4433, in Series.apply(self, func, convert_dtype, args, **kwargs)
4323 def apply(
4324 self,
4325 func: AggFuncType,
(...)
4328 **kwargs,
4329 ) -> DataFrame | Series:
4330 """
4331 Invoke function on values of Series.
4332
(...)
4431 dtype: float64
4432 """
-> 4433 return SeriesApply(self, func, convert_dtype, args, kwargs).apply()
File ~\anaconda3\envs\py10\lib\site-packages\pandas\core\apply.py:1088, in SeriesApply.apply(self)
1084 if isinstance(self.f, str):
1085 # if we are a string, try to dispatch
1086 return self.apply_str()
-> 1088 return self.apply_standard()
File ~\anaconda3\envs\py10\lib\site-packages\pandas\core\apply.py:1143, in SeriesApply.apply_standard(self)
1137 values = obj.astype(object)._values
1138 # error: Argument 2 to "map_infer" has incompatible type
1139 # "Union[Callable[..., Any], str, List[Union[Callable[..., Any], str]],
1140 # Dict[Hashable, Union[Union[Callable[..., Any], str],
1141 # List[Union[Callable[..., Any], str]]]]]"; expected
1142 # "Callable[[Any], Any]"
-> 1143 mapped = lib.map_infer(
1144 values,
1145 f, # type: ignore[arg-type]
1146 convert=self.convert_dtype,
1147 )
1149 if len(mapped) and isinstance(mapped[0], ABCSeries):
1150 # GH#43986 Need to do list(mapped) in order to get treated as nested
1151 # See also GH#25959 regarding EA support
1152 return obj._constructor_expanddim(list(mapped), index=obj.index)
File ~\anaconda3\envs\py10\lib\site-packages\pandas\_libs\lib.pyx:2870, in pandas._libs.lib.map_infer()
Input In [249], in <lambda>(x)
----> 1 train.Age = train.Age.apply(lambda x: x.fillna(x.median()))
AttributeError: 'float' object has no attribute 'fillna'
Could someone lead me in the right direction? I don't even need the code; just some tips/hints. I've been reading through the pandas documentation without any progress. Can it be done with just apply? or some kind of groupby method?
CodePudding user response:
You may check with fillna
without apply
train.Age = train.Age.fillna(train.Age.median())
train
Out[561]:
D Age
0 887 19.0
1 888 26.0
2 889 26.0
3 890 32.0
CodePudding user response:
The above code can only be used when there is NaN or NA values in a specific column. To used it for changing values based on a condition on the values on a row element of a column you can use loc :
train.loc[train['Age'].isna(),'Age'] = train['Age'].median()