I have a column that stores the indexes of the last valid index of another column in a rolling window. This was done based on this answer.
So e.g. we had
d = {'col': [True, False, True, True, False, False]}
df = pd.DataFrame(data=d)
and then we got the last valid index in a rolling window with
df['new'] = df.index
df['new'] = df['new'].where(df.col).ffill().rolling(3).max()
0 NaN
1 NaN
2 2.0
3 3.0
4 3.0
5 3.0
How can I use those indexes to store to a new column new_col
the values of a different column col_b
in the same dataframe at the indexes recorded above?
e.g. if a different column col_b
was
'col_b': [100, 200, 300, 400, 500, 600]
then the expected outcome of new_col
based on the indexes above would be
0 NaN
1 NaN
2 300
3 400
4 400
5 400
PS. Let me know if it's easier to directly use the initial col
for this purpose in some way
CodePudding user response:
One idea is create index by col_b
and then call Series.idxmax
for indices by maximal values from original index:
df = df.set_index('col_b')
df['new']=df.index.to_series().where(df.col).ffill().rolling(3).apply(lambda x: x.idxmax())
df = df.reset_index(drop=True)
print (df)
col new
0 True NaN
1 False NaN
2 True 300.0
3 True 400.0
4 False 400.0
5 False 400.0
CodePudding user response:
Does this work?
new_v2 = df['new'].copy()
new_v2[np.isnan(new_v2)] = 0
new_v2 = new_v2.astype(int)
new_b = df['col_b'].to_numpy()[new_v2]
new_b = new_b.astype('float')
new_b[np.isnan(df['new'])] = np.nan
df['new_b'] = new_b