I am looking to process a large amount of data, so I am interested in the fastest way to compute the following:
I have the below np.array as part of an np.ndarray, which I would like to convert from '<U21' to 'np.datetime64' (ms).
When I execute the following code on one entry, it works:
tmp_array[:,0][0].astype(int).astype('datetime64[ms]')
Result: numpy.datetime64('2019-10-09T22:54:00.000')
When I execute the same on the sub-array like so:
tmp_array[:,0] = tmp_array[:,0].astype(int).astype('datetime64[ms]')
I always get the following error:
RuntimeError: The string provided for NumPy ISO datetime formatting was too short, with length 21
numpy version 1.22.4
array(['1570661640000', '1570661700000', '1570661760000'],dtype='<U21')
CodePudding user response:
I am sure there is a way to use the power of numpy to do this more efficiently but this approach works: Given your tmp_array of the form:
array(['1570661640000', '1570661700000', '1570661760000'], dtype='<U21')
express the unix base date as:
db = np.datetime64('1970-01-01')
then create the desired datetime array by:
cnvrt_array = np.array([db np.timedelta64(int(x), 'ms') for x in tmp_array])
This yields the array:
array(['2019-10-09T22:54:00.000', '2019-10-09T22:55:00.000',
'2019-10-09T22:56:00.000'], dtype='datetime64[ms]')