I'm trying to create a hybrid chart with a combination of a stacked bar chart and a grouped bar chart.
Here's the sample data.
df = pd.DataFrame({
'Categories': ["Two Instances", "Two Instances", "Two Instances"],
'X': ["FS", "HRRS", "Sequential"],
'Y': [146, 82, 80],
'Y1': [157, 160, 162]
})
Here's the current bar plot code:
ax1 = plt.subplots()
ax1 = sns.barplot(x=df["X"], y=df["Y1"], color='#590D22', label="T2")
ax1 = sns.barplot(x=df["X"], y=df["Y"], color='#800F2F', label="T1")
plt.legend(bbox_to_anchor=(1, 1.02), loc='lower right', borderaxespad=0)
plt.show()
I'm trying to combine the first 2 bar plot as side by side rather than stacked. I only want sequential to be stacked. Rest the first two FS and HRRS I'm trying to make it like this.
While 3rd one stays stacked bar plot.
CodePudding user response:
One way to do it is by using patches - create the grouped barplot. Then, just for the Seqquential bars, move them so that they are stacked. This will allow you to have both types in one plot.
df = pd.DataFrame({'Categories': ["Two Instances", "Two Instances", "Two Instances"],
'X': ["FS", "HRRS", "Sequential"],'Y': [146, 82, 80],'Y1': [157, 160, 162]})
fig, ax = plt.subplots(figsize=(10,5))
df.plot(x="X", kind='bar', ax=ax, color=['tab:blue', 'tab:orange'])
ax.patches[2].set_x(ax.patches[2].get_x() 0.125) ## Move Seq-Y bar to right
ax.patches[5].set_x(ax.patches[5].get_x()-0.125) ## Move Seq-Y1 bar to left
ax.patches[5].set_y(ax.patches[2].get_height()) ## Move Seq-Y1 bar up
ax.set_ylim(0, ax.patches[2].get_height() ax.patches[5].get_height() 20) ##Adjust y-axis to show the taller Seq bar
plt.legend(labels=['T2', 'T1'], bbox_to_anchor=(1, 1.02), loc='lower right', borderaxespad=0, )
plt.show()
Plot
CodePudding user response:
Here's what I did with the seaborn library to solve it.
I created two separate datasets with some dummy values so I could perfectly overlap them. It's sort of a workaround, or maybe it's the only way. More solutions or perfect code will be appreciated by the community. Here's what worked for me.
data = {'Value': [146, 157, 82, 160, 0, 0],
'Name': ['T1', 'T2',
'T1', 'T2',
'T1', 'T2'],
'Param': ['FS', 'FS',
'HRRS', 'HRRS',
'Sequential', 'Sequential']}
df = pd.DataFrame(data)
df = df.sort_values(['Name', 'Param'])
df1 = pd.DataFrame({
'X': ["FS", "HRRS", "Sequential"],
'Y': [0, 0, 80],
'Y1': [0, 0, 162]
})
plt.figure()
sns.barplot(x='Param', y='Value', data=df, hue='Name', palette='CMRmap_r')
sns.barplot(x=df1["X"], y=df1["Y1"], color='#ca8d24', label="T3", ax=None)
sns.barplot(x=df1["X"], y=df1["Y"], color='#783c88', label="T3", ax=None)
plt.show()
And with this, I got the Combination of different types of bar charts into one.
CodePudding user response:
not sure if you would want to switch plot libraries completely but this might be close with plotly:
import pandas as pd
import plotly.express as px
df = pd.DataFrame({
'Categories': ["Two Instances", "Two Instances", "Two Instances"],
'X': ["FS", "HRRS", "Sequential"],
'Y': [146, 82, 80],
'Y1': [157, 160, 162]
})
dfFirstTwo = df.head(n=2)
dfThird = df.tail(n=1)
labels={'Y':'T1','Y1':'T2'}
fig = px.bar(dfThird, x='X',y=['Y','Y1'],labels={'Y':'T1','Y1':'T2'})
fig = fig.for_each_trace(lambda t: t.update(name=labels[t.name],
legendgroup = labels[t.name],
))
fig = fig.update_layout(
legend_title=""
)
fig.show()
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(
x=dfFirstTwo.X,
y=dfFirstTwo.Y,
name="T1",
error_y=dict(
type='data',
array=(dfFirstTwo.Y)
)
))
fig.add_trace(go.Bar(
x=dfFirstTwo.X,
y=dfFirstTwo.Y1,
name="T2",
error_y=dict(
type='data',
array=(dfFirstTwo.Y1)
)
))
fig.update_layout(
title="Plot Title",
xaxis_title="X Axis Title",
yaxis_title="X Axis Title",
legend_title="",
)