Sample code:
library(tidyverse)
iris <- iris
test_tidyeval <- function(data, col_name, col_name_2, column1) {
mutate(
data,
{{col_name}} := case_when(Species == "setosa" ~ column1 Sepal.Width Petal.Length,
TRUE ~ column1),
{{col_name_2}} := case_when(Species == "setosa" ~ {{col_name}} 100,
TRUE ~ {{col_name}} 500))
}
iris %>% test_tidyeval("new_column_test", "new_column_test_2", Sepal.Length)
I'm sure this is a tidyeval/nse issue which I can never get my head around.
What I basically want is for new_column_test
to be created where if the row Species == "setosa" then for this to be the sum of Sepal.Length, which we're passing to column1
in the user-defined function, Sepal.Width and Petal.length, else just return the value from Sepal.Length, then for new_column_test_2
to add 100 to new_column_test
with the same logical condition used previously and 500 to non setosa species.
I can seem to manipulate the LHS of case_when okay but I'm stuck on the RHS statements.
CodePudding user response:
You need to be careful when mixing strings and symbols. They behave differently. You use {{ }}
when working with symbols and .data[[]]
when working with strings. This should work
test_tidyeval <- function(data, col_name, col_name_2, column1) {
mutate(
data,
"{col_name}" := case_when(Species == "setosa" ~ {{column1}} Sepal.Width Petal.Length,
TRUE ~ {{column1}}),
"{col_name_2}":= case_when(Species == "setosa" ~ .data[[col_name]] 100,
TRUE ~ .data[[col_name]] 500))
}
iris %>% test_tidyeval("new_column_test", "new_column_test_2", Sepal.Length) %>% str()
#'data.frame': 150 obs. of 7 variables:
# $ Sepal.Length : num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
# $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
# $ Petal.Length : num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
# $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
# $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
# $ new_column_test : num 10 9.3 9.2 9.2 10 11 9.4 9.9 8.7 9.5 ...
# $ new_column_test_2: num 110 109 109 109 110 ...
If you passed everything as symbols, it would look like this
test_tidyeval <- function(data, col_name, col_name_2, column1) {
mutate(
data,
"{{col_name}}" := case_when(Species == "setosa" ~ {{column1}} Sepal.Width Petal.Length,
TRUE ~ {{column1}}),
"{{col_name_2}}":= case_when(Species == "setosa" ~ {{col_name}} 100,
TRUE ~ {{col_name}} 500))
}
iris %>% test_tidyeval(new_column_test, new_column_test_2, Sepal.Length)
CodePudding user response:
A few tweaks and this should get you what you are looking for:
library(tidyverse)
library(rlang)
test_tidyeval <- function(data, col_name, col_name_2, column1) {
mutate(
data,
{{col_name}} := case_when(Species == "setosa" ~ !!enquo(column1) Sepal.Width Petal.Length,
TRUE ~ !!enquo(column1)),
{{col_name_2}} := case_when(Species == "setosa" ~ !!parse_expr(col_name) 100,
TRUE ~ !!parse_expr(col_name) 500)
)
}
iris %>%
test_tidyeval("new_column_test", "new_column_test_2", Sepal.Length) %>%
head()
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species new_column_test
#> 1 5.1 3.5 1.4 0.2 setosa 10.0
#> 2 4.9 3.0 1.4 0.2 setosa 9.3
#> 3 4.7 3.2 1.3 0.2 setosa 9.2
#> 4 4.6 3.1 1.5 0.2 setosa 9.2
#> 5 5.0 3.6 1.4 0.2 setosa 10.0
#> 6 5.4 3.9 1.7 0.4 setosa 11.0
#> new_column_test_2
#> 1 110.0
#> 2 109.3
#> 3 109.2
#> 4 109.2
#> 5 110.0
#> 6 111.0
As brief explanations (of tools used from here):
!!enquo(column1)
first captures the non-charactercolumn1
argument (without evaluating it) and then!!
evaluates it in RHS ofcase_when
!!parse_expr(col_name)
takes thecol_name
string and parses it, again then evaluating it using!!
CodePudding user response:
The problems are:
column1
is passed unevaluated so we need to use{{column1}}
in the functioncol_name
is passed as a character string so use!!sym(col_name)
in the function orc_across(col_name)
or as already mentioned in another answer.data[[col_name]]
- note that since each of the
case_when
's have only 2 arms we could have written this more compactly usingif_else
statements - note that only a dplyr library call is needed
Keeping this as close as we can to the code in the question this gives
library(dplyr)
test_tidyeval <- function(data, col_name, col_name_2, column1) {
mutate(
data,
{{col_name}} := case_when(Species == "setosa" ~ {{column1}}
Sepal.Width Petal.Length,
TRUE ~ {{column1}}),
{{col_name_2}} := case_when(Species == "setosa" ~ !!sym(col_name) 100,
TRUE ~ !!sym(col_name) 500))
}
iris %>% test_tidyeval("new_column_test", "new_column_test_2", Sepal.Length)