I am working with the R programming language.
I have a dataset that looks something like this:
id = c(1,1,1,1,2,2,2)
year = c(2010,2011,2012,2013, 2012, 2013, 2014)
var = rnorm(7,7,7)
my_data = data.frame(id, year,var)
id year var
1 1 2010 12.186300
2 1 2011 19.069836
3 1 2012 7.456078
4 1 2013 14.875019
5 2 2012 20.827933
6 2 2013 5.029625
7 2 2014 -2.260658
For each "group" within the ID column - at each row, I want to take the CUMULATIVE MEAN of the "var" column but EXCLUDE the value of "var" within that row (i.e. most recent).
As an example:
- row 1: NA
- row 2: 12.186300/1
- row 3: (12.186300 19.069836)/2
- row 4: (12.186300 19.069836 7.45)/3
- row 5: NA
- row 6: 20.827933
- row 7: (20.827933 5.029625)/2
I found this post here (Cumsum excluding current value) which (I think) shows how to do this for the "cumulative sum" - I tried to apply the logic here to my question:
transform(my_data, cmean = ave(var, id, FUN = cummean) - var)
id year var cmean
1 1 2010 12.186300 0.000000
2 1 2011 19.069836 -3.441768
3 1 2012 7.456078 5.447994
4 1 2013 14.875019 -1.478211
5 2 2012 20.827933 0.000000
6 2 2013 5.029625 7.899154
7 2 2014 -2.260658 10.126291
The code appears to have run - but I don't think I have done this correctly (i.e. the numbers produced don't match up with the numbers I had anticipated).
I then tried an answer provided here (Compute mean excluding current value):
my_data %>%
group_by(id) %>%
mutate(avg = (sum(var) - var)/(n() - 1))
# A tibble: 7 x 4
# Groups: id [2]
id year var avg
<dbl> <dbl> <dbl> <dbl>
1 1 2010 12.2 13.8
2 1 2011 19.1 11.5
3 1 2012 7.46 15.4
4 1 2013 14.9 12.9
5 2 2012 20.8 1.38
6 2 2013 5.03 9.28
But it is still not working.
Can someone please show me what I am doing wrong and what I can do this fix this problem?
Thanks!
CodePudding user response:
With the help of some intermediate variables you can do it like so:
library(dplyr)
df <- read.table(text = "
id year var
1 1 2010 12.186300
2 1 2011 19.069836
3 1 2012 7.456078
4 1 2013 14.875019
5 2 2012 20.827933
6 2 2013 5.029625
7 2 2014 -2.260658", header=T)
df |>
group_by(id) |>
#mutate(avg =lag(cummean(var)))
mutate(id_g = row_number()) |>
mutate(ms = cumsum(var)) |>
mutate(cm = ms/id_g,
cm = ifelse(ms == cm, NA, cm)) |>
select(-id_g, -ms)
#> # A tibble: 7 × 4
#> # Groups: id [2]
#> id year var cm
#> <int> <int> <dbl> <dbl>
#> 1 1 2010 12.2 NA
#> 2 1 2011 19.1 15.6
#> 3 1 2012 7.46 12.9
#> 4 1 2013 14.9 13.4
#> 5 2 2012 20.8 NA
#> 6 2 2013 5.03 12.9
#> 7 2 2014 -2.26 7.87
CodePudding user response:
df %>%
group_by(id)%>%
mutate(avg = lag(cummean(var)))
# A tibble: 7 × 4
# Groups: id [2]
id year var avg
<int> <int> <dbl> <dbl>
1 1 2010 12.2 NA
2 1 2011 19.1 12.2
3 1 2012 7.46 15.6
4 1 2013 14.9 12.9
5 2 2012 20.8 NA
6 2 2013 5.03 20.8
7 2 2014 -2.26 12.9