I wrote a code to create 8 subplots for the net of each year in my data aggregated by month. I tried to optimize the code using two for loops but I dont know how to hundle the query part in the pd df. Is there a way to rewrite it in a better way or optimize this long code?
The VF_data is just a pandas dataframe with numerical Positive and negative values aggregated per month per year. Other columns are month, year, date.
Thank you all in advance!!
def plot_MTY(df, aggregate_col='NET'):
plt.subplot(2, 4, 1)
VF_data=df.query("(YEAR == '2015')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.subplot(2, 4, 2)
VF_data=df.query("(YEAR == '2016')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.subplot(2, 4, 3)
VF_data=df.query("(YEAR == '2017')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.subplot(2, 4, 4)
VF_data=df.query("(YEAR == '2018')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.subplot(2, 4, 5)
VF_data=df.query("(YEAR == '2019')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.subplot(2, 4, 6)
VF_data=df.query("(YEAR == '2020')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.subplot(2, 4, 7)
VF_data=df.query("(YEAR == '2021')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.subplot(2, 4, 8)
VF_data=df.query("(YEAR == '2022')")
aggregated_target = aggregate_data(VF_data, 'DATES', aggregate_col)
plt.plot(aggregated_target, label = 'df', linestyle="-")
plt.axhline(y=0, color='b', linestyle='-')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.gcf().set_size_inches(15, 8)
plt.show()
CodePudding user response:
You can loop through .groupby("YEAR")
Below some example:
df = pd.DataFrame({
"YEAR": ["2022", "2022", "2023", "2023"],
"x":[1, 2, 3, 4],
"y": [1, 2, 3, 4]
})
for i, (year, gr) in enumerate(df.groupby("YEAR")):
plt.subplot(1, 2, i 1)
plt.plot(gr["x"], gr["y"])