I'm trying to write a logic that will pickup a different column value if the current value is blank. Here is what I have so far:
df['column1'] = df.apply(lambda x: x["column2"] if x["column1"].astype(str)=='' else x["column1"], axis=1)
Is there a more efficient way to test for blank/null?
CodePudding user response:
Just do ffill
if values are nan
(if not replace ''
with np.nan
)
df['column1'] = df['column1'].ffill(df['column2'])