I wanted to create a function that allowed users to slice a dataframe by a column with their input values. I was thinking of doing something like this
slice_df <- function(df, col, values){
df_small = subset(df, col %in% values)
return(df_small)
The problem was the returned df_small
was empty because the column col
provided was a text value whilst the argument in subset
required a similar value but without quotation ''
. For example, slice_df(mydata, 'month', c('Jan', 'Dec'))
wouldn't work because the subset
function required month
instead of 'month'
.
Is there a workaround this? Alternatively, is there a better function than that naive slice_df
? Thanks.
CodePudding user response:
The problem in your code is the missing bracket within the subset function. Here is the updated function :
slice_df <- function(df, col, values){
df_small = subset(df, df[[col]] %in% values)
return(df_small)
}
to check if the function is correct, I used mtcars and sliced vs for 0 values:
slice_df(mtcars,'vs', 0)
output:
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8